Skip to content

Basic Statistics and Standard

summary

summary(
    df: IntoFrameT,
    columns: list[str] | str | None = None,
    weight: str = "",
    print: bool = True,
    stats: list[str] | str | None = None,
    detailed: bool = False,
    additional_stats: list[str] | str | None = None,
    by: list[str] | str | None = None,
    quantile_interpolated: bool = False,
    drb_round: bool = False,
) -> IntoFrameT

Generate summary statistics for a dataframe.

A convenience function for quickly exploring data. Calculates common summary statistics (mean, std, min, max, etc.) with optional weighting and grouping. Works with any dataframe backend (Polars, Pandas, Arrow, DuckDB) via Narwhals.

Parameters:

Name Type Description Default
df IntoFrameT

Input dataframe to summarize.

required
columns list[str] | str | None

Columns to summarize. Supports wildcards (e.g., "income_*"). If None, summarizes all columns. Default is None.

None
weight str

Column name for weights. If provided, calculates weighted statistics. Default is "" (unweighted).

''
print bool

Print the summary table. Default is True.

True
stats list[str] | str | None

Statistics to calculate. If None, uses default set. See Statistics.available_stats() for options. Default is None.

None
detailed bool

Use detailed statistics (includes quartiles). Overrides stats parameter. Default is False.

False
additional_stats list[str] | str | None

Additional statistics beyond the default/detailed set. Examples: ["q10", "q90", "n|not0", "share|not0"]. Default is None.

None
by list[str] | str | None

Column(s) to group by before calculating statistics. Default is None.

None
quantile_interpolated bool

Use interpolated quantiles (vs exact values from data). Default is False.

False
drb_round bool

Apply DRB (Disclosure Review Board) rounding rules for 4 significant digits. Useful for publication-ready output. Default is False.

False

Returns:

Type Description
IntoFrameT

Dataframe of summary statistics (same type as input df).

Examples:

Basic unweighted summary:

>>> from survey_kit.utilities.dataframe import summary
>>> from survey_kit.utilities.random import RandomData
>>> 
>>> df = RandomData(n_rows=1000, seed=123).integer("income", 0, 100_000).to_df()
>>> summary(df)

Weighted summary:

>>> summary(df, weight="survey_weight")

By groups:

>>> summary(df, weight="survey_weight", by="year")

Detailed statistics with rounding:

>>> summary(df, weight="survey_weight", detailed=True, drb_round=True)

Custom statistics:

>>> from survey_kit.statistics.statistics import Statistics
>>> Statistics.available_stats()  # See options
>>> summary(df, additional_stats=["q10", "q90", "n|not0", "share|not0"])

Specific columns with wildcards:

>>> summary(df, columns=["income_*", "age"], weight="survey_weight")

Get results without printing:

>>> df_stats = summary(df, weight="survey_weight", print=False)
>>> print(df_stats.collect())
Notes

Default statistics (if stats=None and detailed=False): - n: Count of non-missing values - n|missing: Count of missing values - mean: Average - std: Standard deviation - min: Minimum - max: Maximum

Detailed statistics (if detailed=True): - Adds: q25, q50 (median), q75

The "|not0" suffix excludes zeros: "n|not0" counts non-zero values, "share|not0" calculates proportion among non-zero observations.

See Also

StatCalculator : For standard errors with replicate weights Statistics : For defining custom statistics

Source code in src\survey_kit\utilities\dataframe.py
@nw.narwhalify
def summary(
    df: IntoFrameT,
    columns: list[str] | str | None = None,
    weight: str = "",
    print: bool = True,
    stats: list[str] | str | None = None,
    detailed: bool = False,
    additional_stats: list[str] | str | None = None,
    by: list[str] | str | None = None,
    quantile_interpolated: bool = False,
    drb_round: bool = False,
) -> IntoFrameT:

    """
    Generate summary statistics for a dataframe.

    A convenience function for quickly exploring data. Calculates common summary
    statistics (mean, std, min, max, etc.) with optional weighting and grouping.
    Works with any dataframe backend (Polars, Pandas, Arrow, DuckDB) via Narwhals.

    Parameters
    ----------
    df : IntoFrameT
        Input dataframe to summarize.
    columns : list[str] | str | None, optional
        Columns to summarize. Supports wildcards (e.g., "income_*").
        If None, summarizes all columns. Default is None.
    weight : str, optional
        Column name for weights. If provided, calculates weighted statistics.
        Default is "" (unweighted).
    print : bool, optional
        Print the summary table. Default is True.
    stats : list[str] | str | None, optional
        Statistics to calculate. If None, uses default set.
        See Statistics.available_stats() for options. Default is None.
    detailed : bool, optional
        Use detailed statistics (includes quartiles). 
        Overrides stats parameter. Default is False.
    additional_stats : list[str] | str | None, optional
        Additional statistics beyond the default/detailed set.
        Examples: ["q10", "q90", "n|not0", "share|not0"]. Default is None.
    by : list[str] | str | None, optional
        Column(s) to group by before calculating statistics. Default is None.
    quantile_interpolated : bool, optional
        Use interpolated quantiles (vs exact values from data). Default is False.
    drb_round : bool, optional
        Apply DRB (Disclosure Review Board) rounding rules for 4 significant digits.
        Useful for publication-ready output. Default is False.

    Returns
    -------
    IntoFrameT
        Dataframe of summary statistics (same type as input df).

    Examples
    --------
    Basic unweighted summary:

    >>> from survey_kit.utilities.dataframe import summary
    >>> from survey_kit.utilities.random import RandomData
    >>> 
    >>> df = RandomData(n_rows=1000, seed=123).integer("income", 0, 100_000).to_df()
    >>> summary(df)

    Weighted summary:

    >>> summary(df, weight="survey_weight")

    By groups:

    >>> summary(df, weight="survey_weight", by="year")

    Detailed statistics with rounding:

    >>> summary(df, weight="survey_weight", detailed=True, drb_round=True)

    Custom statistics:

    >>> from survey_kit.statistics.statistics import Statistics
    >>> Statistics.available_stats()  # See options
    >>> summary(df, additional_stats=["q10", "q90", "n|not0", "share|not0"])

    Specific columns with wildcards:

    >>> summary(df, columns=["income_*", "age"], weight="survey_weight")

    Get results without printing:

    >>> df_stats = summary(df, weight="survey_weight", print=False)
    >>> print(df_stats.collect())

    Notes
    -----
    Default statistics (if stats=None and detailed=False):
    - n: Count of non-missing values
    - n|missing: Count of missing values
    - mean: Average
    - std: Standard deviation
    - min: Minimum
    - max: Maximum

    Detailed statistics (if detailed=True):
    - Adds: q25, q50 (median), q75

    The "|not0" suffix excludes zeros: "n|not0" counts non-zero values,
    "share|not0" calculates proportion among non-zero observations.

    See Also
    --------
    StatCalculator : For standard errors with replicate weights
    Statistics : For defining custom statistics
    """

    from ..statistics.calculator import StatCalculator
    from ..statistics.statistics import Statistics

    columns = list_input(columns)
    stats = list_input(stats)
    additional_stats = list_input(additional_stats)
    by = list_input(by)
    if len(by) > 1:
        by = [by]


    if len(columns):
        columns = columns_from_list(df=df, columns=columns)
    else:
        columns = df.lazy().collect_schema().names()

    if len(stats) == 0:
        if detailed:
            stats = [
                "n",
                "n|missing",
                "mean",
                "std",
                "min",
                "q25",
                "q50",
                "q75",
                "max",
            ] + additional_stats

        else:
            stats = ["n", "n|missing", "mean", "std", "min", "max"] + additional_stats

    if weight != "" and weight in columns:
        columns.remove(weight)
    stats = Statistics(
        stats=stats, columns=columns, quantile_interpolated=quantile_interpolated
    )

    sc = StatCalculator(
        df=df,
        statistics=stats,
        display=print,
        round_output=drb_round,
        weight=weight,
        by=by,
    )

    return sc.df_estimates

StatCalculator

Bases: Serializable

A comprehensive class for calculating statistical estimates with optional replicate weights.

StatCalculator provides a unified interface for computing various statistics on datasets, with support for weighted calculations, replicate weight standard errors, grouping, and comparison operations. It handles both simple estimates and complex bootstrap or replicate weight variance estimation.

The class supports: - Multiple statistics calculated simultaneously - Weighted and unweighted estimates - Replicate weight and bootstrap standard errors - Grouping/stratification via by - Automatic disclosure avoidance rounding (which can be disabled) - Comparison operations between sets of estimate

Parameters:

Name Type Description Default
df IntoFrameT

A narwhals-compliant dataframe

None
statistics list[Statistics] | Statistics | None

Statistics object(s) defining what columns and statistics to calculate. Each Statistics object specifies variables and statistical measures. Default is None.

None
weight str

Column name for survey weights if weighted estimates are desired. Default is "" (unweighted).

''
scale_wgts_to float

Value to scale weights to sum to (proportional adjustment). Default is 0.0 (no scaling).

0.0
replicates Replicates | None

Replicates object for calculating replicate weight standard errors. Generates weight lists from stub names and counts. Default is None.

None
by dict[str, list[str]] | list | None

Dictionary defining grouping variables for stratified estimates. Keys are group names, values are lists of grouping variables. Example: {"state":["st"], "county":["st","cty"]}. Default is None.

None
display bool

Whether to print results to log automatically. Default is True.

True
display_all_vars bool

Print all variables or truncate display. Default is True.

True
display_max_vars int

Maximum variables to display when display_all_vars=False. Default is 20.

20
round_output bool | int

Apply rounding to output (True for DRB rules, int for sig digits). Default is True.

False
calculate bool

Internal parameter - whether to run calculations immediately. Default is True.

True

Attributes:

Name Type Description
df_estimates IntoFrameT, narwhals compliant dataframe

Main estimates dataframe with calculated statistics.

df_ses IntoFrameT, narwhals compliant dataframe

Standard errors dataframe (populated when replicates are used).

df_replicates IntoFrameT, narwhals compliant dataframe

Full replicate estimates for additional analysis.

variable_ids list[str]

Column names that identify unique estimates/variables.

summarize_vars list[str]

All grouping variables from by (flattened).

bootstrap bool

Whether bootstrap standard errors are to be calculated, as opposed to replicate weights.

Examples:

Basic usage with simple statistics:

>>> from NEWS.CodeUtilities.Python.SummaryStats import Statistics
>>> stats = Statistics(columns=["income", "age"], statistics=["mean", "median"])
>>> sc = StatCalculator(df=my_data, statistics=stats, weight="survey_wgt")
>>> sc.print()

With replicate weights for standard errors:

>>> from NEWS.CodeUtilities.Python.SummaryStats import Replicates
>>> reps = Replicates(weight_stub="rep_wgt_", n_replicates=80)
>>> sc = StatCalculator(df=my_data, statistics=stats, replicates=reps)
>>> sc.print()  # Will show standard errors

Grouped analysis:

>>> calc = StatCalculator(
...     df=my_data,
...     statistics=stats,
...     by={"state": ["state_code"], "region": ["region_code"]}
... )

Comparison between two sets of estimates:

>>> sc_1 = StatCalculator(df=data1, statistics=stats)
>>> sc_2 = StatCalculator(df=data2, statistics=stats)
>>> comparison = sc_1.compare(sc_2)
>>> comparison["difference"].print()
Source code in src\survey_kit\statistics\calculator.py
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
class StatCalculator(Serializable):
    """
    A comprehensive class for calculating statistical estimates with optional replicate weights.

    StatCalculator provides a unified interface for computing various statistics on datasets,
    with support for weighted calculations, replicate weight standard errors, grouping,
    and comparison operations. It handles both simple estimates and complex bootstrap
    or replicate weight variance estimation.

    The class supports:
    - Multiple statistics calculated simultaneously
    - Weighted and unweighted estimates
    - Replicate weight and bootstrap standard errors
    - Grouping/stratification via by
    - Automatic disclosure avoidance rounding (which can be disabled)
    - Comparison operations between sets of estimate

    Parameters
    ----------
    df : IntoFrameT
        A narwhals-compliant dataframe
    statistics : list[Statistics]|Statistics|None, optional
        Statistics object(s) defining what columns and statistics to calculate.
        Each Statistics object specifies variables and statistical measures.
        Default is None.
    weight : str, optional
        Column name for survey weights if weighted estimates are desired.
        Default is "" (unweighted).
    scale_wgts_to : float, optional
        Value to scale weights to sum to (proportional adjustment).
        Default is 0.0 (no scaling).
    replicates : Replicates|None, optional
        Replicates object for calculating replicate weight standard errors.
        Generates weight lists from stub names and counts. Default is None.
    by : dict[str,list[str]]|list|None, optional
        Dictionary defining grouping variables for stratified estimates.
        Keys are group names, values are lists of grouping variables.
        Example: {"state":["st"], "county":["st","cty"]}. Default is None.
    display : bool, optional
        Whether to print results to log automatically. Default is True.
    display_all_vars : bool, optional
        Print all variables or truncate display. Default is True.
    display_max_vars : int, optional
        Maximum variables to display when display_all_vars=False. Default is 20.
    round_output : bool|int, optional
        Apply rounding to output (True for DRB rules, int for sig digits).
        Default is True.
    calculate : bool, optional
        Internal parameter - whether to run calculations immediately.
        Default is True.

    Attributes
    ----------
    df_estimates : IntoFrameT, narwhals compliant dataframe
        Main estimates dataframe with calculated statistics.
    df_ses : IntoFrameT, narwhals compliant dataframe
        Standard errors dataframe (populated when replicates are used).
    df_replicates : IntoFrameT, narwhals compliant dataframe
        Full replicate estimates for additional analysis.
    variable_ids : list[str]
        Column names that identify unique estimates/variables.
    summarize_vars : list[str]
        All grouping variables from by (flattened).
    bootstrap : bool
        Whether bootstrap standard errors are to be
        calculated, as opposed to replicate weights.

    Examples
    --------
    Basic usage with simple statistics:

    >>> from NEWS.CodeUtilities.Python.SummaryStats import Statistics
    >>> stats = Statistics(columns=["income", "age"], statistics=["mean", "median"])
    >>> sc = StatCalculator(df=my_data, statistics=stats, weight="survey_wgt")
    >>> sc.print()

    With replicate weights for standard errors:

    >>> from NEWS.CodeUtilities.Python.SummaryStats import Replicates
    >>> reps = Replicates(weight_stub="rep_wgt_", n_replicates=80)
    >>> sc = StatCalculator(df=my_data, statistics=stats, replicates=reps)
    >>> sc.print()  # Will show standard errors

    Grouped analysis:

    >>> calc = StatCalculator(
    ...     df=my_data,
    ...     statistics=stats,
    ...     by={"state": ["state_code"], "region": ["region_code"]}
    ... )

    Comparison between two sets of estimates:

    >>> sc_1 = StatCalculator(df=data1, statistics=stats)
    >>> sc_2 = StatCalculator(df=data2, statistics=stats)
    >>> comparison = sc_1.compare(sc_2)
    >>> comparison["difference"].print()
    """

    _save_suffix = "stats_calc"

    def __init__(
        self,
        df: IntoFrameT | None = None,
        statistics: list[Statistics] | Statistics | None = None,
        weight: str = "",
        scale_wgts_to: float = 0.0,
        replicates: Replicates | None = None,
        by: dict[str, list[str]] | list | None = None,
        display: bool = True,
        display_all_vars: bool = True,
        display_max_vars: int = 20,
        round_output: bool | int = False,
        allow_slow_pandas: bool = False,
        calculate: bool = True,
    ):
        if statistics is None:
            self.statistics = []
            calculate = False
        elif type(statistics) is Statistics:
            statistics = [statistics]

        self.df = df
        if statistics is not None:
            if type(statistics) is not list:
                statistics = [statistics]
        self.statistics = statistics
        self.weight = weight
        if by is not None:
            if len(by) == 0:
                by = None

        self.by = by
        self.display = display
        self.display_all_vars = display_all_vars
        self.display_max_vars = display_max_vars
        self.round_output = round_output
        self.summarize_vars = self._by_vars()
        self.rounding = Rounding(round_output=round_output, round_all=False)

        #   Default columns for variable name id
        self.variable_ids = ["Variable"]

        self.replicates = replicates
        self.scale_wgts_to = scale_wgts_to

        self.allow_slow_pandas = allow_slow_pandas

        self.replicate_stats = ReplicateStats()
        if replicates is not None:
            self.replicate_stats.bootstrap = replicates.bootstrap

        self.scale_weights()

        if calculate:
            if self.replicates is None:
                self._calculate()
            else:
                self._calculate_replicates()

            self.df = None

    def copy(self):
        sc_copy = StatCalculator(
            df=self.df,
            statistics=copy(self.statistics),
            weight=self.weight,
            scale_wgts_to=0,
            replicates=copy(self.replicates),
            by=copy(self.by),
            display=self.display,
            display_all_vars=self.display_all_vars,
            display_max_vars=self.display_max_vars,
            round_output=False,
            allow_slow_pandas=allow_slow_pandas,
            calculate=False,
        )

        sc_copy.scale_wgts_to = self.scale_wgts_to
        sc_copy.rounding = copy(self.rounding)
        sc_copy.replicate_stats = self.replicate_stats.copy()
        sc_copy.variable_ids = self.variable_ids

        return sc_copy

    @property
    def df_estimates(self):
        """
        IntoFrameT : Main estimates dataframe containing calculated statistics.

        This property provides access to the primary results table with all
        calculated statistics. Includes variable identifiers, grouping variables,
        and statistical estimates as columns.
        """
        return self.replicate_stats.df_estimates

    @df_estimates.setter
    def df_estimates(self, value):
        self.replicate_stats.df_estimates = value

    @property
    def df_ses(self):
        """
        IntoFrameT : Standard errors dataframe (when replicate weights are used).

        Contains standard error estimates for all statistics calculated using
        replicate weight methods. Has the same structure as df_estimates but
        with standard errors instead of point estimates. Only populated when
        replicates parameter is provided.
        """
        return self.replicate_stats.df_ses

    @df_ses.setter
    def df_ses(self, value):
        self.replicate_stats.df_ses = value

    @property
    def df_replicates(self):
        """
        IntoFrameT : Full replicate estimates dataframe.

        Contains individual estimates for each replicate weight, allowing for
        custom variance calculations or additional analysis. Includes all
        columns from df_estimates plus a replicate identifier column.
        Only populated when replicates parameter is provided.
        """
        return self.replicate_stats.df_replicates

    @df_replicates.setter
    def df_replicates(self, value):
        self.replicate_stats.df_replicates = value

    @property
    def bootstrap(self):
        return self.replicate_stats.bootstrap

    def _by_vars(self=None, by: dict | None = None) -> list[str]:
        """
        Just get a list of the variables to be used as indexes for
            summary stats (for a select statement)
        Returns
        -------
        list[str]
            A full list of all the indexes (with no duplicates)

        """

        if by is None:
            by = self.by

        summarize_list = []

        if by is not None:
            if type(by) is dict:
                for listi in by.values():
                    summarize_list.extend(listi)
            elif type(by) is list:
                for itemi in by:
                    if type(itemi) is list:
                        summarize_list.extend(itemi)
                    else:
                        summarize_list.append(itemi)

            summarize_list = list(dict.fromkeys(summarize_list))

        return summarize_list

    def _calculate(self, weight: str | None = None, display: bool | None = None):
        """
        Parameters
        ----------
        weight : str|None, optional
            Programmer option, do not use. The default is None.
        display : bool|None, optional
            Display the results?. The default is None.

        Returns
        -------
        Calculate the estimates (no SEs).  Mostly should only be called internally
        Populates df_estimates

        """

        df_collected = None

        if weight is None:
            weight = self.weight

        for statsi in self.statistics:
            dfi = statsi.calculate(
                df=self.df,
                weight=weight,
                by=self.by,
                summarize_vars=self.summarize_vars,
                rounding=self.rounding,
                allow_slow_pandas=self.allow_slow_pandas,
            )

            if df_collected is None:
                df_collected = dfi
            else:
                cols_prior = df_collected.drop(
                    self.variable_ids + self.summarize_vars
                ).columns
                cols_now = dfi.drop(self.variable_ids + self.summarize_vars).columns
                cols_match = list(set(cols_prior).intersection(cols_now))

                n_rows = df_collected.select(nw.len()).collect().item()
                df_collected = (
                    join_wrapper(
                        df=df_collected.with_row_index("__summary_index__"),
                        df_to=dfi.with_row_index("__summary_index2__", offset=n_rows),
                        on=self.variable_ids + self.summarize_vars,
                        how="full",
                    )
                    # df_collected = (
                    #                     JoinFileList_Simple(
                    #                         dflist=[
                    #                                     df_collected.with_row_index("__summary_index__"),
                    #                                     dfi.with_row_index("__summary_index2__",
                    #                                                        offset=dfRowCount(df_collected)),
                    #                                 ],
                    #                         Join="outer",
                    #                         JoinOn=self.variable_ids + self.summarize_vars,
                    #                         join_nulls=True,
                    #                         quietly=True
                    #                     )
                    .with_columns(
                        nw.coalesce(
                            nw.col(["__summary_index__", "__summary_index2__"]).alias(
                                "__summary_index__"
                            )
                        )
                    )
                    .sort(self.summarize_vars + ["__summary_index__"])
                    .drop(["__summary_index__", "__summary_index2__"])
                )

                if len(cols_match):
                    cols_new = list(set(cols_now).difference(cols_prior))
                    cols_select = cols_prior + cols_new
                    with_coalesce = [
                        nw.coalesce(nw.col(coli, f"{coli}_right"))
                        for coli in cols_match
                    ]

                    df_collected = df_collected.with_columns(with_coalesce).select(
                        self.variable_ids + self.summarize_vars + cols_select
                    )

        self.df_estimates = df_collected

        if self.rounding.round_output:
            self.df_estimates = self.round_results()

        if display is None:
            display = self.display

        if display:
            self.print()

        return self.df_estimates

    def _calculate_replicates(self):
        """
        Calculate the estimates for each replicate weight

        Returns
        -------
        Populates df_estimates, df_ses and df_replicates

        """

        replicate_se_return = replicates_ses_from_function(
            delegate=self._calculate,
            arguments={"display": False},
            join_on=self.variable_ids + self.summarize_vars,
            weights=self.replicates.rep_list,
            bootstrap=self.replicates.bootstrap,
        )

        self.df_estimates = replicate_se_return.df_estimates
        self.df_ses = replicate_se_return.df_ses
        self.df_replicates = replicate_se_return.df_replicates

        if self.rounding.round_output:
            self.df_ses = self.round_results(df=self.df_ses)

        if self.display:
            self.print()

    def round_results(
        self,
        df: IntoFrameT | None = None,
        rounding: Rounding | None = None,
        display_only: bool = False,
    ) -> IntoFrameT:
        """
        Parameters
        ----------
        df : IntoFrameT, optional
            Table of estimates. The default is the estimates in df_estimates
        rounding : Rounding|None, optional
            Rounding (True for DRB rules) and an integer for specific number of significant digits. The default is self's rounding.
        display_only : bool, optional
            If True, affects the display of numbers (casts to strings). The default is False.

        Returns
        -------
        df : IntoFrameT
            The rounded estimates.

        """

        if df is None:
            df = self.df_estimates

        if rounding is None:
            rounding = self.rounding

        if df is not None:
            df = drb_round_table(
                df=df,
                columns=rounding.cols_round,
                columns_n=rounding.cols_n,
                columns_exclude=rounding.cols_exclude,
                round_all=rounding.round_all,
                digits=rounding.round_digits,
                display_only=display_only,
            )

        return df

    def scale_weights(self=None):
        if self.df is None:
            return None

        if self.scale_wgts_to > 0:
            if self.weight != "":
                self.df = self.df.with_columns(
                    (
                        nw.col(self.weight) / nw.sum(self.weight) * self.scale_wgts_to
                    ).alias(self.weight)
                )

            if self.replicates is not None:
                for weighti in self.replicates.rep_list:
                    self.df = self.df.with_columns(
                        (nw.col(weighti) / nw.sum(weighti) * self.scale_wgts_to).alias(
                            weighti
                        )
                    )

    def print(
        self,
        df: IntoFrameT | None = None,
        round_output: bool | int | None = None,
        estimates_per_page: int = 0,
        sub_log: logging = None,
    ):
        """
        Print the estimates (with SEs if applicable) to the log.

        Parameters
        ----------
        df : IntoFrameT, optional
            The estimates to display. Default is the estimates in self.
        round_output : bool|int|None, optional
            Rounding rule (True for DRB, integer for number of significant digits).
            Default is self's rounding rule.
        estimates_per_page : int, optional
            Repeat the header every k estimates. Defaults to 0 (don't repeat).
        sub_log : logging, optional
            Override logger. Default is None (no override).

        Returns
        -------
        None
        """
        if self.df_replicates is not None:
            self._print_replicates(
                round_output=round_output,
                estimates_per_page=estimates_per_page,
                sub_log=sub_log,
            )
        else:
            self._print_estimates(
                df=df,
                round_output=round_output,
                estimates_per_page=estimates_per_page,
                sub_log=sub_log,
            )

    def _print_estimates(
        self,
        df: IntoFrameT | None = None,
        round_output: bool | int | None = None,
        estimates_per_page: int = 0,
        sub_log: logging = None,
    ):
        """
        Prints the estimates (when there are no SEs) to the log

        Parameters
        ----------
        df : IntoFrameT, optional
            The estimates to show The default is the estimates in self.
        round_output : bool|int|None, optional
            Rounding rule (True for DRB, integer for number of significant digits). The default is self's rounding rule.
        estimates_per_page : int, optional
            Repeat the header every k estimates.  Defaults to 0 (don't)
        sub_log : logging , optional
            Override logger?  Default is None (no override)
        Returns
        -------
        None.

        """

        if df is None:
            df = self.df_estimates

        nw_type = NarwhalsType(df)
        df = nw_type.to_polars().lazy().collect()
        if sub_log is None:
            sub_log = logger

        #   f_print = print
        f_print = sub_log.info
        #   Round?
        if round_output:
            rounding = deepcopy(self.rounding)
            rounding.set_round_digits(round_output)

            df = self.round_results(df=df, rounding=rounding, display_only=True)

        if self.display_all_vars:
            n_rows = df.height
        else:
            n_rows = min(self.display_max_vars, df.height)

        with pl.Config(fmt_str_lengths=50) as cfg:
            #   Basic formatting
            cfg.set_tbl_cell_alignment("RIGHT")
            cfg.set_tbl_hide_column_data_types(True)
            cfg.set_tbl_hide_dataframe_shape(True)
            cfg.set_thousands_separator(True)
            cfg.set_tbl_width_chars(600)
            cfg.set_tbl_cols(len(df.lazy().collect_schema()))

            cfg.set_tbl_rows(n_rows)

            if estimates_per_page > 0 and n_rows > estimates_per_page:
                slices = math.ceil(n_rows / estimates_per_page)

                for slicei in range(slices):
                    f_print(
                        df.slice(
                            offset=estimates_per_page * slicei,
                            length=estimates_per_page,
                        )
                    )
            else:
                f_print(df)

    def _print_replicates(
        self,
        round_output: bool | int | None = None,
        estimates_per_page: int = 0,
        sub_log: logging = None,
    ):
        """
        Prints the estimates (when there are SEs) to the log

        Parameters
        ----------
        round_output : bool|int|None, optional
            Rounding rule (True for DRB, integer for number of significant digits). The default is self's rounding rule.
        estimates_per_page : int, optional
            Repeat the header every k estimates.  Defaults to 0 (don't)
        sub_log : logging , optional
            Override logger?  Default is None (no override)

        Returns
        -------
        None.

        """
        if sub_log is None:
            sub_log = logger

        #   Round?
        if round_output:
            rounding = deepcopy(self.rounding)
            rounding.set_round_digits(round_output)

            df_estimates = self.round_results(
                df=self.df_estimates, rounding=rounding, display_only=True
            )
            df_ses = self.round_results(
                df=self.df_ses, rounding=rounding, display_only=True
            )
        else:
            df_estimates = self.df_estimates
            df_ses = self.df_ses

        print_se_table(
            df_estimates=df_estimates,
            df_ses=df_ses,
            display_all_vars=self.display_all_vars,
            display_max_vars=self.display_max_vars,
            sort_vars=self.variable_ids + self.summarize_vars,
            round_output=False,
            sub_log=sub_log,
        )

    def table_of_estimates(
        self,
        round_output: bool | int | None = None,
        estimates_to_show: list[str] | None = None,
        variable_prefix: str = "",
        estimate_type_variable_name: str = "Statistic",
        ci_level: float = 0.95,
    ) -> IntoFrameT:
        """
        Create a formatted table of estimates with option of statistics to report.

        Parameters
        ----------
        round_output : bool|int|None, optional
            Rounding rule for display.
        estimates_to_show : list[str] | None, optional
            List of estimate types to include. Options: "estimate", "se", "t", "p", "ci".
            Default is ["estimate", "se"].
        variable_prefix : str, optional
            Prefix to add to variable column names. Default is "".
        estimate_type_variable_name : str, optional
            Name for the column indicating statistic type. Default is "Statistic".
        ci_level : float, optional
            Confidence interval level for "ci" estimates. Default is 0.95.

        Returns
        -------
        IntoFrameT
            Formatted table with estimates arranged by statistic type.
        """
        if estimates_to_show is None:
            estimates_to_show = ["estimate", "se"]

        df_ordered = []
        nw_ordered = []
        col_sort = "__order_output_table__"
        for index, esti in enumerate(estimates_to_show):
            dfi = None
            if esti.lower() == "estimate":
                dfi = self.df_estimates

            elif esti.lower() == "se" and self.df_replicates is not None:
                dfi = self.df_ses
            elif esti.lower() == "t" and self.df_replicates is not None:
                dfi = self._df_t()
            elif esti.lower() == "p" and self.df_replicates is not None:
                dfi = self._df_p()
            elif esti.lower() == "ci" and self.df_replicates is not None:
                dfi = self._df_ci(ci_level=ci_level)
            else:
                message = f"{esti} not allowed for estimates_to_show"
                logger.error(message)
                raise Exception(message)

            if dfi is not None:
                nwi = NarwhalsType(dfi)
                nw_ordered.append(nwi)
                dfi = nwi.to_polars()
                df_ordered.append(
                    dfi.with_columns(
                        [
                            pl.lit(index).alias(col_sort),
                            pl.lit(esti.lower()).alias(estimate_type_variable_name),
                        ]
                    )
                )

        col_row_index = "___estimate_row_count___"
        df_ordered[0] = df_ordered[0].with_row_index(col_row_index)
        df_display = concat_wrapper(df_ordered, how="diagonal").lazy()

        sort_vars = self.variable_ids + self.summarize_vars
        df_display = df_display.sort(sort_vars + [col_sort]).with_columns(
            pl.col(col_row_index).forward_fill()
        )
        df_display = df_display.sort([col_row_index] + [col_sort]).drop(col_row_index)

        #   Clear extraneous information
        with_clear = []
        for coli in sort_vars:
            c_col = pl.col(coli)
            with_clear.append(
                pl.when(pl.col(col_sort) != 0)
                .then(pl.lit(""))
                .otherwise(c_col.cast(pl.String))
                .alias(coli)
            )

        select_order = sort_vars + [estimate_type_variable_name]
        remaining = []
        rename = {}
        for coli in df_display.lazy.collect_schema().names():
            if coli not in select_order and coli != col_sort:
                if variable_prefix != "":
                    rename[coli] = f"{variable_prefix}{coli}"

                remaining.append(coli)

        df_display = df_display.with_columns(with_clear).select(
            select_order + remaining
        )
        #   Round?
        if round_output:
            rounding = deepcopy(self.rounding)
            rounding.set_round_digits(round_output)

            if (
                len(rounding.cols_n) == 0
                and len(rounding.cols_round) == 0
                and not rounding.round_all
            ):
                #   Nothing set to round, round all
                rounding.cols_round = remaining

            df_display = self.round_results(
                df=df_display, rounding=rounding, display_only=True
            )

        if len(rename):
            df_display = df_display.rename(rename)
        return nw_ordered[0].lazy().from_polars(df_display)

    def join_tables_of_estimates(
        self, df_list: list[IntoFrameT], estimate_type_variable_name: str = "Statistic"
    ) -> IntoFrameT:
        df_list = [nw.from_native(dfi) for dfi in df_list]
        sort_vars = (
            self.variable_ids + self.summarize_vars + [estimate_type_variable_name]
        )

        variable_filled = []
        for coli in self.variable_ids:
            if df_list[0].schema[coli] == nw.String:
                c_missing = nw.col(coli).is_null() | (pl.col(coli) == "")
            else:
                c_missing = nw.col(coli).is_missing()

            variable_filled.append(
                (
                    nw.when(c_missing)
                    .then(nw.lit(None))
                    .otherwise(nw.col(coli))
                    .alias(coli)
                    .fill_null(strategy="forward")
                )
            )

        row_indices = []
        for i in range(0, len(df_list)):
            row_indices.append(f"__row_index_{i}")
            df_list[i] = (
                df_list[i]
                .with_row_index(f"__row_index_{i}")
                .with_columns(variable_filled)
            )

        df_out = join_list(df_list, on=sort_vars, how="full").sort(row_indices)

        with_clear = []
        c_index = nw.col("__row_index_0")
        for coli in self.variable_ids:
            c_col = nw.col(coli)

            with_clear.append(
                nw.when(c_index == nw.min("__row_index_0").over(self.variable_ids))
                .then(c_col)
                .otherwise(nw.lit(""))
                .alias(coli)
            )

        df_out = df_out.with_columns(with_clear).news.drop_if_exists(["__row_index_*"])
        return df_out.to_native()

    def _df_t(self) -> IntoFrameT:
        join_on = self.variable_ids + self.summarize_vars
        nw_type = NarwhalsType(self.df_estimates)
        cols_stats = (
            nw.from_native(self.df_estimates)
            .lazy()
            .drop(join_on)
            .collect_schema()
            .names()
        )

        with_t = []
        for coli in cols_stats:
            c_est = nw.col(coli)
            c_se = nw.col(f"{coli}_se")

            with_t.append((c_est / c_se).abs().alias(coli))

        df_out = join_list(
            [self.df_estimates, self.df_ses],
            how="left",
            on=join_on,
            suffixes=["", "_se"],
        ).select(join_on + with_t)
        return NarwhalsType.return_df(df_out, nw_type)

    def _df_p(self) -> pl.DataFrame | pl.LazyFrame:
        nw_p = NarwhalsType(self._df_t())
        df_p = nw_p.to_polars()

        join_on = self.variable_ids + self.summarize_vars
        cols_stats = self.df_estimates.drop(join_on).columns

        def p_value(t):
            if t == float("inf") or t == float("nan"):
                return 0
            df = 1_000_000

            return scipy.stats.t.sf(t, df) * 2

        def p_value_lambda(t, col_t):
            try:
                return p_value(t[col_t])
            except:
                return None

        for coli in cols_stats:
            index_t = df_p.columns.index(f"{coli}")

            df_p = (
                df_p.with_columns(df_p.map_rows(lambda t: p_value_lambda(t, index_t)))
                .drop(coli)
                .rename({"map": coli})
            )

        return nw_p.from_polars(df_p.select(join_on + cols_stats))

    def _df_ci(self, ci_level: float = 0.95):
        return self.replicate_stats._df_ci(
            ci_level=ci_level, join_on=self.variable_ids + self.summarize_vars
        )

    def compare(
        self,
        compare_to,
        difference: bool = True,
        ratio: bool = True,
        display: bool = True,
        ratio_minus_1: bool = True,
        compare_list_variables: list[ComparisonItem.Variable] | None = None,
        compare_list_columns: list[ComparisonItem.Column] | None = None,
        quietly: bool = False,
    ):
        """
        Compare this set of estimates to another set of estimates,
        including MultipleImputation estimates.

        Parameters
        ----------
        compare_to : StatCalculator | MultipleImputation
            The other object to compare to.
        difference : bool, optional
            Calculate and return the difference (with key "difference"). Default is True.
        ratio : bool, optional
            Calculate and return the ratio (with key "ratio"). Default is True.
        ratio_minus_1 : bool, optional
            Rescale ratio by subtracting 1 from it. Default is True.
        display : bool, optional
            Print the difference/ratio to the log. Default is True.
        compare_list_variables : list[ComparisonItem.Variable] | None, optional
            List of variables to compare (i.e. compare rows from prior calculations)
        compare_list_columns : list[ComparisonItem.Column], optional
            List of columns to compare
            For example if compare_list_variables = [ComparisonItem.Column("mean","median")]
                then compare the mean of 1 to the median of 2
        quietly : bool, optional
            Suppress informational messages. Default is False.

        Returns
        -------
        dict[str, StatCalculator]
            Dictionary with keys ["difference","ratio"] containing
            StatCalculator objects with the comparison estimates
            (with SEs if applicable).
        """

        outputs = {}
        if statistical_comparison_item(self) and statistical_comparison_item(
            compare_to
        ):
            if not quietly:
                if self.bootstrap:
                    logger.info("Comparing estimates using bootstrap weights")
                else:
                    logger.info("Comparing estimates using replicate weights")

            outputs = compare(
                stats1=self,
                stats2=compare_to,
                join_on=self.variable_ids + self.summarize_vars,
                rounding=self.rounding,
                difference=difference,
                ratio=ratio,
                ratio_minus_1=ratio_minus_1,
                compare_list_variables=compare_list_variables,
                compare_list_columns=compare_list_columns,
            )

            if display:
                if difference:
                    logger.info("  Difference")
                    outputs["difference"].print(round_output=self.round_output)
                    logger.info("\n")
                if ratio:
                    logger.info("  Ratio")
                    outputs["ratio"].print(round_output=self.round_output)
                    logger.info("\n")

        else:
            if not quietly:
                logger.info("Comparing estimates")

            df1 = self.df_estimates
            df2 = compare_to.df_estimates

            (df1, df2) = StatComp.process_compare_lists(
                df1=df1,
                df2=df2,
                join_on=self._by_vars() + self.variable_ids,
                compare_list_variables=compare_list_variables,
                compare_list_columns=compare_list_columns,
            )

            sm_compare = StatCalculator(
                df=None, statistics=self.statistics, by=self.by, calculate=False
            )

            cols_index = self.variable_ids + self.summarize_vars
            cols_nonindex = df1.drop(cols_index).columns

            df1 = SafeCollect(df1)
            df2 = SafeCollect(df2)

            #   logger.info(df1.schema)
            #   Upcast any columns that need to be
            [df1, df2] = _polars_safe_upcast(
                df1.with_columns(pl.col(pl.Boolean).cast(pl.Int8)),
                df2.with_columns(pl.col(pl.Boolean).cast(pl.Int8)),
                cols1=cols_nonindex,
                cols2=cols_nonindex,
            )

            df_difference = SafeCollect(df2.select(cols_nonindex)) - df1.select(
                cols_nonindex
            )
            df_ratio = (df_difference) / df1.select(cols_nonindex)

            if difference:
                sm_diff = sm_compare

                if ratio:
                    sm_compare = deepcopy(sm_diff)

                sm_diff.df_estimates = pl.concat(
                    [df1.select(cols_index), df_difference], how="horizontal"
                )

                outputs["difference"] = sm_diff

                if display:
                    logger.info("  Difference")
                    sm_diff.print(round_output=sm_diff.round_output)
                    logger.info("\n")

            if ratio:
                sm_ratio = sm_compare

                sm_ratio.df_estimates = pl.concat(
                    [df1.select(cols_index), df_ratio], how="horizontal"
                )

                outputs["ratio"] = sm_ratio

                if display:
                    logger.info("  Ratio")
                    sm_ratio.print(round_output=sm_ratio.round_output)
                    logger.info("\n")

        return outputs

    def from_function(delegate:Callable,
                      estimate_ids:list | str,
                      df:IntoFrameT | None=None,
                      df_argument:str="df",
                      arguments:dict|None=None,
                      weight:str="",
                      replicates:Replicates|None=None,
                      scale_wgts_to:float=0.0,
                      weight_argument_name:str="weight",
                      by:dict[str,list[str]]|None=None,
                      display:bool=True,
                      display_all_vars:bool=True,
                      display_max_vars:int=20,
                      round_output:bool|int=True) -> StatCalculator:
        """
        Create a StatCalculator from a custom function that returns estimates.

        This static method allows wrapping any function that returns estimates
        in a StatCalculator object for easy display and comparison.

        Parameters
        ----------
        delegate : callable
            Function that returns a table of estimates. Must accept weight
            parameter if replicates are used.
        estimate_ids : list | str
            Column names that identify each unique estimate.
        df : pl.LazyFrame | pl.DataFrame, optional
            Dataframe passed as "df" argument to delegate. Allows dynamic
            subsetting with by. Default is None.
        df_argument : str, optional
            Name of argument with data. Defaults is "df".
        arguments : dict, optional
            Static arguments (other than weight) passed to delegate. Default is None.
        weight : str, optional
            Weight column name for weighted statistics. Default is "".
        replicates : Replicates|None, optional
            Replicates object for replicate weight standard errors. Default is None.
        scale_wgts_to : float, optional
            Scale weights to sum to this value. Default is 0.0 (no scaling).
        weight_argument_name : str, optional
            Keyword argument name for passing weight to delegate. Default is "weight".
        by : dict[str,list[str]]|None, optional
            Dictionary defining grouping variables for summary statistics.
        display : bool, optional
            Print results to log. Default is True.
        display_all_vars : bool, optional
            Print all variables rather than truncated summary. Default is True.
        display_max_vars : int, optional
            Maximum variables to print if display_all_vars=False. Default is 20.
        round_output : bool|int, optional
            Round the output. Default is True.

        Returns
        -------
        StatCalculator
            StatCalculator object containing the function results with
            estimates, SEs, and replicates as applicable.
        """

        #   Input parsing
        if arguments is None:
            arguments = {}

        if type(estimate_ids) is str:
            estimate_ids = [estimate_ids]

        if df is None:
            by = None
        else:
            if scale_wgts_to > 0:
                if weight != "":
                    weights_to_cast = [weight]
                    if replicates is not None:
                        weights_to_cast.extend(replicates.rep_list)
                    df = safe_sum_cast(df,
                                       weights_to_cast)

                    with_scale = [(nw.col(weighti)/nw.col(weighti).sum()*scale_wgts_to).alias(nw.col(weighti)) for weighti in weights_to_cast]
                    df = (
                        nw.from_native(df)
                        .with_columns(with_scale)
                        .to_native()
                    )

        if by is None:
            by = {"All":[]}

        replicate_name = "___replicate___"

        df_estimates = []
        df_ses = []
        df_replicates = []
        by_vars = StatCalculator._by_vars(by=by)

        nw_type = NarwhalsType(df)
        for keyi, valuei in by.items():
            if keyi == "All":
                logger.info(f"Running {delegate.__name__}")
            else:
                logger.info(f"Running {delegate.__name__} for {keyi}")

            df_list = []
            if df is not None:
                if len(valuei):
                    df_partitioned = (
                        nw_type.to_polars()
                        .lazy()
                        .collect()
                        .partition_by(
                            by=valuei,
                            maintain_order=True,
                            include_key=True
                        )
                    )

                    df_partitioned = [nw_type.from_polars(dfi) for dfi in df_partitioned]

                    df_list.extend(df_partitioned)
                else:
                    df_list.append(df)

            if len(df_list) == 0:
                df_list = [None]

            for dfi in df_list:
                append_by = []
                append_values = []

                if dfi is not None:
                    arguments[df_argument] = dfi

                    if len(valuei):
                        append_values = dfi.select(valuei).unique().to_dicts()
                        append_by = [nw.lit(valuei).alias(keyi) for keyi, valuei in append_values[0].items()]

                if replicates is None:
                    df_esti = delegate(**arguments)
                    if len(append_by):
                        df_esti = (
                            nw.from_native(df_esti)
                            .with_columns(append_by)
                            .to_native()
                        )

                    df_estimates.append(df_esti)
                else:
                    if len(append_values):
                        logger.info(append_values)

                    rep_return = replicates_ses_from_function(delegate=delegate,
                                                             arguments=arguments,
                                                             join_on=estimate_ids,
                                                             weight_argument_name=weight_argument_name,
                                                             weights=replicates.rep_list,
                                                             replicate_name=replicate_name)

                    df_esti = rep_return.df_estimates
                    df_sei = rep_return.df_ses
                    df_repi = rep_return.df_replicates

                    if len(append_by):
                        df_esti = (
                            nw.from_native(df_esti)
                            .with_columns(append_by)
                            .to_native()
                        )
                        df_sei = (
                            nw.from_native(df_sei)
                            .with_columns(append_by)
                            .to_native()
                        )

                        df_repi = (
                            nw.from_native(df_repi)
                            .with_columns(append_by)
                            .to_native()
                        )

                    df_estimates.append(df_esti)
                    df_ses.append(df_sei)
                    df_replicates.append(df_repi)

            del df_list

        #   Set up the output
        ss_out = StatCalculator(df=None,
                                weight=weight,
                                replicates=replicates,
                                by=by,
                                display=display,
                                display_all_vars=display_all_vars,
                                display_max_vars=display_max_vars,
                                round_output=round_output,
                                calculate=False)

        ss_out.variable_ids = estimate_ids

        if len(df_estimates):
            df_estimates = concat_wrapper(df_estimates,
                                          how="diagonal")
            #   Final variable order
            if len(by_vars):
                select_order = estimate_ids + by_vars
                select_order.extend([coli for coli in safe_columns(df_estimates) if coli not in select_order])
            else:
                select_order = safe_columns(df_estimates)
            ss_out.df_estimates = df_estimates.select(select_order)
        if len(df_ses):
            ss_out.df_ses = concat_wrapper(df_ses,
                                       how="diagonal").select(select_order)

        if len(df_ses):
            ss_out.df_replicates = concat_wrapper(df_replicates,
                                                  how="diagonal").select(select_order + [replicate_name])

        ss_out.df_estimates = ss_out.round_results(df=ss_out.df_estimates)
        ss_out.df_ses = ss_out.round_results(df=ss_out.df_ses)

        if display:
            ss_out.print()

        return ss_out

    def filter(self, filter_expr: nw.Expr) -> StatCalculator:
        self = self.copy()
        self.replicate_stats = self.replicate_stats.filter(filter_expr)

        return self

    def select(
        self, select_expr: nw.Expr | str | list[str] | list[nw.Expr]
    ) -> StatCalculator:
        cols_keep = (
            nw.from_native(self.df_estimates)
            .lazy()
            .select(select_expr)
            .collect_schema()
            .names()
        )
        add_join_on = list(set(self.variable_ids).difference(cols_keep))
        cols_keep = add_join_on + cols_keep

        self = self.copy()
        self.replicate_stats = self.replicate_stats.select(cols_keep)

        return self

    def with_columns(self, with_expr: nw.Expr | list[nw.Expr]) -> StatCalculator:
        self = self.copy()
        self.replicate_stats = self.replicate_stats.with_columns(with_expr)

        return self

    def sort(
        self, sort_expr: nw.Expr | list[nw.Expr] | str | list[str]
    ) -> StatCalculator:
        self = self.copy()
        self.replicate_stats = self.replicate_stats.sort(sort_expr)

        return self

    def drop(
        self, drop_expr: nw.Expr | list[nw.Expr] | str | list[str]
    ) -> ReplicateStats:
        self = self.copy()
        self.replicate_stats = self.replicate_stats.drop(drop_expr)

        return self

    def rename(self, d_rename: dict[str, str]) -> StatCalculator:
        self = self.copy()
        self.replicate_stats = self.replicate_stats.rename(d_rename)

        return self

    def scale_by(
        self, factor: float, columns: list[str] | str | None = None
    ) -> StatCalculator:
        if columns is None:
            #   Any columns that aren't the join_on ones
            columns = (
                nw.from_native(self.df_estimates.columns)
                .lazy()
                .collect_schema()
                .names()
            )
            columns = list(set(columns).difference(self.join_on))

        return self.with_columns(with_expr=nw.col(columns) * factor)

    def pipe(self, function: Callable, *args, **kwargs) -> StatCalculator:
        """
        Pipe a function to df_estimates, df_ses, and df_replicates (as necessary)

        Parameters
        ----------
        function : Callable
            Function to pipe.
        *args : TYPE
            arguments to function
        **kwargs : TYPE
            keyword arguments to function

        Returns
        -------
        StatCalculator

        """

        self = self.copy()
        self.replicate_stats = self.replicate_stats.pipe(
            function=function, *args, **kwargs
        )

        return self

    # def reshape_groups_wide_long(self,
    #                              copy:bool=False,
    #                              group_first:bool=True,
    #                              group_col:str="Group",
    #                              invert_group:bool=False) -> StatCalculator:
    #     if copy:
    #         self = self.copy()

    #     def _reshape(df:pl.DataFrame | pl.LazyFrame,
    #                  join_on:list[str]) -> pl.DataFrame | pl.LazyFrame:
    #         if "___replicate___" in df.columns :
    #             join_on = join_on + ["___replicate___"]

    #         df_concat = []
    #         for coli in df.columns:
    #             if coli not in join_on:
    #                 coli_group = coli.split(":")[0]
    #                 coli_value = coli.split(":")[1]
    #                 c_name = pl.col(join_on[0])
    #                 rename = {coli:coli_value}

    #                 if group_first:
    #                     with_name = pl.concat_str([pl.lit(coli_group),
    #                                                pl.lit(":"),
    #                                                c_name]).alias(c_name.meta.output_name())
    #                 else:
    #                     with_name = pl.concat_str([c_name,
    #                                                pl.lit(":"),
    #                                                pl.lit(coli_group)]).alias(c_name.meta.output_name())

    #                 with_name = with_name.alias(c_name.meta.output_name())
    #                 if group_col != "":
    #                     if invert_group:
    #                         with_name = [with_name,
    #                                      coli_value.alias(group_col)]
    #                     else:
    #                         with_name = [with_name,
    #                                      pl.lit(coli_group).alias(group_col)]

    #                 df_concat.append((df.select(join_on + [coli])
    #                                     .rename(rename)
    #                                     .with_columns(with_name)))

    #         return pl.concat(df_concat,
    #                          how="vertical_relaxed")

    #     self = self.pipe(_reshape,
    #                      join_on=self.variable_ids)

    #     return self
    def concat_with(
        self, sc_concat: StatCalculator, how: str = "horizontal"
    ) -> StatCalculator:
        """
        Concatenate this with another StatCalculator object

        Parameters
        ----------
        sc_concat : StatCalculator
            Other mi object to concatenate with.
        how : str, optional
            horizontal or vertical?
            Horizontal will actually do a join and vertical will just stack them
            The default is "horizontal".

        Returns
        -------
        StatCalculator

        """

        self = self.copy()

        self.replicate_stats.concat_with(
            rs_concat=sc_concat.replicate_stats,
            join_on_self=self.variable_ids,
            join_on_concat=sc_concat.variable_ids,
        )

        return self

    def drb_round_table(
        self,
        columns: list | str | None = None,
        columns_n: list | str | None = None,
        columns_exclude: list | str | None = None,
        round_all: bool = True,
        digits: int = 4,
        compress: bool = False,
    ) -> StatCalculator:
        """
        Apply DRB (Disclosure Review Board) rounding rules to the estimates.

        Parameters
        ----------
        columns : list|str|None, optional
            Specific columns to round. Default is None.
        columns_n : list|str|None, optional
            Columns to treat as counts for rounding. Default is None.
        columns_exclude : list|str|None, optional
            Columns to exclude from rounding. Default is None.
        round_all : bool, optional
            Apply rounding to all numeric columns. Default is True.
        digits : int, optional
            Number of significant digits for rounding. Default is 4.
        compress : bool, optional
            Use compressed rounding format. Default is False.

        Returns
        -------
        StatCalculator
            StatCalculator with DRB rounding applied.
        """
        kwargs = copy(locals())
        del kwargs["self"]
        self.replicate_stats = self.replicate_stats.pipe(
            function=drb_round_table, **kwargs
        )

        return self

    #####################################################
    #   Serializable - BEGIN
    #####################################################
    @classmethod
    def _init_from_dict(cls, data: dict):
        return super()._init_from_dict(data, calculate=False)

df_estimates property writable

df_estimates

IntoFrameT : Main estimates dataframe containing calculated statistics.

This property provides access to the primary results table with all calculated statistics. Includes variable identifiers, grouping variables, and statistical estimates as columns.

df_replicates property writable

df_replicates

IntoFrameT : Full replicate estimates dataframe.

Contains individual estimates for each replicate weight, allowing for custom variance calculations or additional analysis. Includes all columns from df_estimates plus a replicate identifier column. Only populated when replicates parameter is provided.

df_ses property writable

df_ses

IntoFrameT : Standard errors dataframe (when replicate weights are used).

Contains standard error estimates for all statistics calculated using replicate weight methods. Has the same structure as df_estimates but with standard errors instead of point estimates. Only populated when replicates parameter is provided.

compare

compare(
    compare_to,
    difference: bool = True,
    ratio: bool = True,
    display: bool = True,
    ratio_minus_1: bool = True,
    compare_list_variables: list[Variable] | None = None,
    compare_list_columns: list[Column] | None = None,
    quietly: bool = False,
)

Compare this set of estimates to another set of estimates, including MultipleImputation estimates.

Parameters:

Name Type Description Default
compare_to StatCalculator | MultipleImputation

The other object to compare to.

required
difference bool

Calculate and return the difference (with key "difference"). Default is True.

True
ratio bool

Calculate and return the ratio (with key "ratio"). Default is True.

True
ratio_minus_1 bool

Rescale ratio by subtracting 1 from it. Default is True.

True
display bool

Print the difference/ratio to the log. Default is True.

True
compare_list_variables list[Variable] | None

List of variables to compare (i.e. compare rows from prior calculations)

None
compare_list_columns list[Column]

List of columns to compare For example if compare_list_variables = [ComparisonItem.Column("mean","median")] then compare the mean of 1 to the median of 2

None
quietly bool

Suppress informational messages. Default is False.

False

Returns:

Type Description
dict[str, StatCalculator]

Dictionary with keys ["difference","ratio"] containing StatCalculator objects with the comparison estimates (with SEs if applicable).

Source code in src\survey_kit\statistics\calculator.py
def compare(
    self,
    compare_to,
    difference: bool = True,
    ratio: bool = True,
    display: bool = True,
    ratio_minus_1: bool = True,
    compare_list_variables: list[ComparisonItem.Variable] | None = None,
    compare_list_columns: list[ComparisonItem.Column] | None = None,
    quietly: bool = False,
):
    """
    Compare this set of estimates to another set of estimates,
    including MultipleImputation estimates.

    Parameters
    ----------
    compare_to : StatCalculator | MultipleImputation
        The other object to compare to.
    difference : bool, optional
        Calculate and return the difference (with key "difference"). Default is True.
    ratio : bool, optional
        Calculate and return the ratio (with key "ratio"). Default is True.
    ratio_minus_1 : bool, optional
        Rescale ratio by subtracting 1 from it. Default is True.
    display : bool, optional
        Print the difference/ratio to the log. Default is True.
    compare_list_variables : list[ComparisonItem.Variable] | None, optional
        List of variables to compare (i.e. compare rows from prior calculations)
    compare_list_columns : list[ComparisonItem.Column], optional
        List of columns to compare
        For example if compare_list_variables = [ComparisonItem.Column("mean","median")]
            then compare the mean of 1 to the median of 2
    quietly : bool, optional
        Suppress informational messages. Default is False.

    Returns
    -------
    dict[str, StatCalculator]
        Dictionary with keys ["difference","ratio"] containing
        StatCalculator objects with the comparison estimates
        (with SEs if applicable).
    """

    outputs = {}
    if statistical_comparison_item(self) and statistical_comparison_item(
        compare_to
    ):
        if not quietly:
            if self.bootstrap:
                logger.info("Comparing estimates using bootstrap weights")
            else:
                logger.info("Comparing estimates using replicate weights")

        outputs = compare(
            stats1=self,
            stats2=compare_to,
            join_on=self.variable_ids + self.summarize_vars,
            rounding=self.rounding,
            difference=difference,
            ratio=ratio,
            ratio_minus_1=ratio_minus_1,
            compare_list_variables=compare_list_variables,
            compare_list_columns=compare_list_columns,
        )

        if display:
            if difference:
                logger.info("  Difference")
                outputs["difference"].print(round_output=self.round_output)
                logger.info("\n")
            if ratio:
                logger.info("  Ratio")
                outputs["ratio"].print(round_output=self.round_output)
                logger.info("\n")

    else:
        if not quietly:
            logger.info("Comparing estimates")

        df1 = self.df_estimates
        df2 = compare_to.df_estimates

        (df1, df2) = StatComp.process_compare_lists(
            df1=df1,
            df2=df2,
            join_on=self._by_vars() + self.variable_ids,
            compare_list_variables=compare_list_variables,
            compare_list_columns=compare_list_columns,
        )

        sm_compare = StatCalculator(
            df=None, statistics=self.statistics, by=self.by, calculate=False
        )

        cols_index = self.variable_ids + self.summarize_vars
        cols_nonindex = df1.drop(cols_index).columns

        df1 = SafeCollect(df1)
        df2 = SafeCollect(df2)

        #   logger.info(df1.schema)
        #   Upcast any columns that need to be
        [df1, df2] = _polars_safe_upcast(
            df1.with_columns(pl.col(pl.Boolean).cast(pl.Int8)),
            df2.with_columns(pl.col(pl.Boolean).cast(pl.Int8)),
            cols1=cols_nonindex,
            cols2=cols_nonindex,
        )

        df_difference = SafeCollect(df2.select(cols_nonindex)) - df1.select(
            cols_nonindex
        )
        df_ratio = (df_difference) / df1.select(cols_nonindex)

        if difference:
            sm_diff = sm_compare

            if ratio:
                sm_compare = deepcopy(sm_diff)

            sm_diff.df_estimates = pl.concat(
                [df1.select(cols_index), df_difference], how="horizontal"
            )

            outputs["difference"] = sm_diff

            if display:
                logger.info("  Difference")
                sm_diff.print(round_output=sm_diff.round_output)
                logger.info("\n")

        if ratio:
            sm_ratio = sm_compare

            sm_ratio.df_estimates = pl.concat(
                [df1.select(cols_index), df_ratio], how="horizontal"
            )

            outputs["ratio"] = sm_ratio

            if display:
                logger.info("  Ratio")
                sm_ratio.print(round_output=sm_ratio.round_output)
                logger.info("\n")

    return outputs

concat_with

concat_with(
    sc_concat: StatCalculator, how: str = "horizontal"
) -> StatCalculator

Concatenate this with another StatCalculator object

Parameters:

Name Type Description Default
sc_concat StatCalculator

Other mi object to concatenate with.

required
how str

horizontal or vertical? Horizontal will actually do a join and vertical will just stack them The default is "horizontal".

'horizontal'

Returns:

Type Description
StatCalculator
Source code in src\survey_kit\statistics\calculator.py
def concat_with(
    self, sc_concat: StatCalculator, how: str = "horizontal"
) -> StatCalculator:
    """
    Concatenate this with another StatCalculator object

    Parameters
    ----------
    sc_concat : StatCalculator
        Other mi object to concatenate with.
    how : str, optional
        horizontal or vertical?
        Horizontal will actually do a join and vertical will just stack them
        The default is "horizontal".

    Returns
    -------
    StatCalculator

    """

    self = self.copy()

    self.replicate_stats.concat_with(
        rs_concat=sc_concat.replicate_stats,
        join_on_self=self.variable_ids,
        join_on_concat=sc_concat.variable_ids,
    )

    return self

drb_round_table

drb_round_table(
    columns: list | str | None = None,
    columns_n: list | str | None = None,
    columns_exclude: list | str | None = None,
    round_all: bool = True,
    digits: int = 4,
    compress: bool = False,
) -> StatCalculator

Apply DRB (Disclosure Review Board) rounding rules to the estimates.

Parameters:

Name Type Description Default
columns list | str | None

Specific columns to round. Default is None.

None
columns_n list | str | None

Columns to treat as counts for rounding. Default is None.

None
columns_exclude list | str | None

Columns to exclude from rounding. Default is None.

None
round_all bool

Apply rounding to all numeric columns. Default is True.

True
digits int

Number of significant digits for rounding. Default is 4.

4
compress bool

Use compressed rounding format. Default is False.

False

Returns:

Type Description
StatCalculator

StatCalculator with DRB rounding applied.

Source code in src\survey_kit\statistics\calculator.py
def drb_round_table(
    self,
    columns: list | str | None = None,
    columns_n: list | str | None = None,
    columns_exclude: list | str | None = None,
    round_all: bool = True,
    digits: int = 4,
    compress: bool = False,
) -> StatCalculator:
    """
    Apply DRB (Disclosure Review Board) rounding rules to the estimates.

    Parameters
    ----------
    columns : list|str|None, optional
        Specific columns to round. Default is None.
    columns_n : list|str|None, optional
        Columns to treat as counts for rounding. Default is None.
    columns_exclude : list|str|None, optional
        Columns to exclude from rounding. Default is None.
    round_all : bool, optional
        Apply rounding to all numeric columns. Default is True.
    digits : int, optional
        Number of significant digits for rounding. Default is 4.
    compress : bool, optional
        Use compressed rounding format. Default is False.

    Returns
    -------
    StatCalculator
        StatCalculator with DRB rounding applied.
    """
    kwargs = copy(locals())
    del kwargs["self"]
    self.replicate_stats = self.replicate_stats.pipe(
        function=drb_round_table, **kwargs
    )

    return self

from_function

from_function(
    delegate: Callable,
    estimate_ids: list | str,
    df: IntoFrameT | None = None,
    df_argument: str = "df",
    arguments: dict | None = None,
    weight: str = "",
    replicates: Replicates | None = None,
    scale_wgts_to: float = 0.0,
    weight_argument_name: str = "weight",
    by: dict[str, list[str]] | None = None,
    display: bool = True,
    display_all_vars: bool = True,
    display_max_vars: int = 20,
    round_output: bool | int = True,
) -> StatCalculator

Create a StatCalculator from a custom function that returns estimates.

This static method allows wrapping any function that returns estimates in a StatCalculator object for easy display and comparison.

Parameters:

Name Type Description Default
delegate callable

Function that returns a table of estimates. Must accept weight parameter if replicates are used.

required
estimate_ids list | str

Column names that identify each unique estimate.

required
df LazyFrame | DataFrame

Dataframe passed as "df" argument to delegate. Allows dynamic subsetting with by. Default is None.

None
df_argument str

Name of argument with data. Defaults is "df".

'df'
arguments dict

Static arguments (other than weight) passed to delegate. Default is None.

None
weight str

Weight column name for weighted statistics. Default is "".

''
replicates Replicates | None

Replicates object for replicate weight standard errors. Default is None.

None
scale_wgts_to float

Scale weights to sum to this value. Default is 0.0 (no scaling).

0.0
weight_argument_name str

Keyword argument name for passing weight to delegate. Default is "weight".

'weight'
by dict[str, list[str]] | None

Dictionary defining grouping variables for summary statistics.

None
display bool

Print results to log. Default is True.

True
display_all_vars bool

Print all variables rather than truncated summary. Default is True.

True
display_max_vars int

Maximum variables to print if display_all_vars=False. Default is 20.

20
round_output bool | int

Round the output. Default is True.

True

Returns:

Type Description
StatCalculator

StatCalculator object containing the function results with estimates, SEs, and replicates as applicable.

Source code in src\survey_kit\statistics\calculator.py
def from_function(delegate:Callable,
                  estimate_ids:list | str,
                  df:IntoFrameT | None=None,
                  df_argument:str="df",
                  arguments:dict|None=None,
                  weight:str="",
                  replicates:Replicates|None=None,
                  scale_wgts_to:float=0.0,
                  weight_argument_name:str="weight",
                  by:dict[str,list[str]]|None=None,
                  display:bool=True,
                  display_all_vars:bool=True,
                  display_max_vars:int=20,
                  round_output:bool|int=True) -> StatCalculator:
    """
    Create a StatCalculator from a custom function that returns estimates.

    This static method allows wrapping any function that returns estimates
    in a StatCalculator object for easy display and comparison.

    Parameters
    ----------
    delegate : callable
        Function that returns a table of estimates. Must accept weight
        parameter if replicates are used.
    estimate_ids : list | str
        Column names that identify each unique estimate.
    df : pl.LazyFrame | pl.DataFrame, optional
        Dataframe passed as "df" argument to delegate. Allows dynamic
        subsetting with by. Default is None.
    df_argument : str, optional
        Name of argument with data. Defaults is "df".
    arguments : dict, optional
        Static arguments (other than weight) passed to delegate. Default is None.
    weight : str, optional
        Weight column name for weighted statistics. Default is "".
    replicates : Replicates|None, optional
        Replicates object for replicate weight standard errors. Default is None.
    scale_wgts_to : float, optional
        Scale weights to sum to this value. Default is 0.0 (no scaling).
    weight_argument_name : str, optional
        Keyword argument name for passing weight to delegate. Default is "weight".
    by : dict[str,list[str]]|None, optional
        Dictionary defining grouping variables for summary statistics.
    display : bool, optional
        Print results to log. Default is True.
    display_all_vars : bool, optional
        Print all variables rather than truncated summary. Default is True.
    display_max_vars : int, optional
        Maximum variables to print if display_all_vars=False. Default is 20.
    round_output : bool|int, optional
        Round the output. Default is True.

    Returns
    -------
    StatCalculator
        StatCalculator object containing the function results with
        estimates, SEs, and replicates as applicable.
    """

    #   Input parsing
    if arguments is None:
        arguments = {}

    if type(estimate_ids) is str:
        estimate_ids = [estimate_ids]

    if df is None:
        by = None
    else:
        if scale_wgts_to > 0:
            if weight != "":
                weights_to_cast = [weight]
                if replicates is not None:
                    weights_to_cast.extend(replicates.rep_list)
                df = safe_sum_cast(df,
                                   weights_to_cast)

                with_scale = [(nw.col(weighti)/nw.col(weighti).sum()*scale_wgts_to).alias(nw.col(weighti)) for weighti in weights_to_cast]
                df = (
                    nw.from_native(df)
                    .with_columns(with_scale)
                    .to_native()
                )

    if by is None:
        by = {"All":[]}

    replicate_name = "___replicate___"

    df_estimates = []
    df_ses = []
    df_replicates = []
    by_vars = StatCalculator._by_vars(by=by)

    nw_type = NarwhalsType(df)
    for keyi, valuei in by.items():
        if keyi == "All":
            logger.info(f"Running {delegate.__name__}")
        else:
            logger.info(f"Running {delegate.__name__} for {keyi}")

        df_list = []
        if df is not None:
            if len(valuei):
                df_partitioned = (
                    nw_type.to_polars()
                    .lazy()
                    .collect()
                    .partition_by(
                        by=valuei,
                        maintain_order=True,
                        include_key=True
                    )
                )

                df_partitioned = [nw_type.from_polars(dfi) for dfi in df_partitioned]

                df_list.extend(df_partitioned)
            else:
                df_list.append(df)

        if len(df_list) == 0:
            df_list = [None]

        for dfi in df_list:
            append_by = []
            append_values = []

            if dfi is not None:
                arguments[df_argument] = dfi

                if len(valuei):
                    append_values = dfi.select(valuei).unique().to_dicts()
                    append_by = [nw.lit(valuei).alias(keyi) for keyi, valuei in append_values[0].items()]

            if replicates is None:
                df_esti = delegate(**arguments)
                if len(append_by):
                    df_esti = (
                        nw.from_native(df_esti)
                        .with_columns(append_by)
                        .to_native()
                    )

                df_estimates.append(df_esti)
            else:
                if len(append_values):
                    logger.info(append_values)

                rep_return = replicates_ses_from_function(delegate=delegate,
                                                         arguments=arguments,
                                                         join_on=estimate_ids,
                                                         weight_argument_name=weight_argument_name,
                                                         weights=replicates.rep_list,
                                                         replicate_name=replicate_name)

                df_esti = rep_return.df_estimates
                df_sei = rep_return.df_ses
                df_repi = rep_return.df_replicates

                if len(append_by):
                    df_esti = (
                        nw.from_native(df_esti)
                        .with_columns(append_by)
                        .to_native()
                    )
                    df_sei = (
                        nw.from_native(df_sei)
                        .with_columns(append_by)
                        .to_native()
                    )

                    df_repi = (
                        nw.from_native(df_repi)
                        .with_columns(append_by)
                        .to_native()
                    )

                df_estimates.append(df_esti)
                df_ses.append(df_sei)
                df_replicates.append(df_repi)

        del df_list

    #   Set up the output
    ss_out = StatCalculator(df=None,
                            weight=weight,
                            replicates=replicates,
                            by=by,
                            display=display,
                            display_all_vars=display_all_vars,
                            display_max_vars=display_max_vars,
                            round_output=round_output,
                            calculate=False)

    ss_out.variable_ids = estimate_ids

    if len(df_estimates):
        df_estimates = concat_wrapper(df_estimates,
                                      how="diagonal")
        #   Final variable order
        if len(by_vars):
            select_order = estimate_ids + by_vars
            select_order.extend([coli for coli in safe_columns(df_estimates) if coli not in select_order])
        else:
            select_order = safe_columns(df_estimates)
        ss_out.df_estimates = df_estimates.select(select_order)
    if len(df_ses):
        ss_out.df_ses = concat_wrapper(df_ses,
                                   how="diagonal").select(select_order)

    if len(df_ses):
        ss_out.df_replicates = concat_wrapper(df_replicates,
                                              how="diagonal").select(select_order + [replicate_name])

    ss_out.df_estimates = ss_out.round_results(df=ss_out.df_estimates)
    ss_out.df_ses = ss_out.round_results(df=ss_out.df_ses)

    if display:
        ss_out.print()

    return ss_out

pipe

pipe(function: Callable, *args, **kwargs) -> StatCalculator

Pipe a function to df_estimates, df_ses, and df_replicates (as necessary)

Parameters:

Name Type Description Default
function Callable

Function to pipe.

required
*args TYPE

arguments to function

()
**kwargs TYPE

keyword arguments to function

{}

Returns:

Type Description
StatCalculator
Source code in src\survey_kit\statistics\calculator.py
def pipe(self, function: Callable, *args, **kwargs) -> StatCalculator:
    """
    Pipe a function to df_estimates, df_ses, and df_replicates (as necessary)

    Parameters
    ----------
    function : Callable
        Function to pipe.
    *args : TYPE
        arguments to function
    **kwargs : TYPE
        keyword arguments to function

    Returns
    -------
    StatCalculator

    """

    self = self.copy()
    self.replicate_stats = self.replicate_stats.pipe(
        function=function, *args, **kwargs
    )

    return self

print

print(
    df: IntoFrameT | None = None,
    round_output: bool | int | None = None,
    estimates_per_page: int = 0,
    sub_log: logging = None,
)

Print the estimates (with SEs if applicable) to the log.

Parameters:

Name Type Description Default
df IntoFrameT

The estimates to display. Default is the estimates in self.

None
round_output bool | int | None

Rounding rule (True for DRB, integer for number of significant digits). Default is self's rounding rule.

None
estimates_per_page int

Repeat the header every k estimates. Defaults to 0 (don't repeat).

0
sub_log logging

Override logger. Default is None (no override).

None

Returns:

Type Description
None
Source code in src\survey_kit\statistics\calculator.py
def print(
    self,
    df: IntoFrameT | None = None,
    round_output: bool | int | None = None,
    estimates_per_page: int = 0,
    sub_log: logging = None,
):
    """
    Print the estimates (with SEs if applicable) to the log.

    Parameters
    ----------
    df : IntoFrameT, optional
        The estimates to display. Default is the estimates in self.
    round_output : bool|int|None, optional
        Rounding rule (True for DRB, integer for number of significant digits).
        Default is self's rounding rule.
    estimates_per_page : int, optional
        Repeat the header every k estimates. Defaults to 0 (don't repeat).
    sub_log : logging, optional
        Override logger. Default is None (no override).

    Returns
    -------
    None
    """
    if self.df_replicates is not None:
        self._print_replicates(
            round_output=round_output,
            estimates_per_page=estimates_per_page,
            sub_log=sub_log,
        )
    else:
        self._print_estimates(
            df=df,
            round_output=round_output,
            estimates_per_page=estimates_per_page,
            sub_log=sub_log,
        )

round_results

round_results(
    df: IntoFrameT | None = None,
    rounding: Rounding | None = None,
    display_only: bool = False,
) -> IntoFrameT

Parameters:

Name Type Description Default
df IntoFrameT

Table of estimates. The default is the estimates in df_estimates

None
rounding Rounding | None

Rounding (True for DRB rules) and an integer for specific number of significant digits. The default is self's rounding.

None
display_only bool

If True, affects the display of numbers (casts to strings). The default is False.

False

Returns:

Name Type Description
df IntoFrameT

The rounded estimates.

Source code in src\survey_kit\statistics\calculator.py
def round_results(
    self,
    df: IntoFrameT | None = None,
    rounding: Rounding | None = None,
    display_only: bool = False,
) -> IntoFrameT:
    """
    Parameters
    ----------
    df : IntoFrameT, optional
        Table of estimates. The default is the estimates in df_estimates
    rounding : Rounding|None, optional
        Rounding (True for DRB rules) and an integer for specific number of significant digits. The default is self's rounding.
    display_only : bool, optional
        If True, affects the display of numbers (casts to strings). The default is False.

    Returns
    -------
    df : IntoFrameT
        The rounded estimates.

    """

    if df is None:
        df = self.df_estimates

    if rounding is None:
        rounding = self.rounding

    if df is not None:
        df = drb_round_table(
            df=df,
            columns=rounding.cols_round,
            columns_n=rounding.cols_n,
            columns_exclude=rounding.cols_exclude,
            round_all=rounding.round_all,
            digits=rounding.round_digits,
            display_only=display_only,
        )

    return df

table_of_estimates

table_of_estimates(
    round_output: bool | int | None = None,
    estimates_to_show: list[str] | None = None,
    variable_prefix: str = "",
    estimate_type_variable_name: str = "Statistic",
    ci_level: float = 0.95,
) -> IntoFrameT

Create a formatted table of estimates with option of statistics to report.

Parameters:

Name Type Description Default
round_output bool | int | None

Rounding rule for display.

None
estimates_to_show list[str] | None

List of estimate types to include. Options: "estimate", "se", "t", "p", "ci". Default is ["estimate", "se"].

None
variable_prefix str

Prefix to add to variable column names. Default is "".

''
estimate_type_variable_name str

Name for the column indicating statistic type. Default is "Statistic".

'Statistic'
ci_level float

Confidence interval level for "ci" estimates. Default is 0.95.

0.95

Returns:

Type Description
IntoFrameT

Formatted table with estimates arranged by statistic type.

Source code in src\survey_kit\statistics\calculator.py
def table_of_estimates(
    self,
    round_output: bool | int | None = None,
    estimates_to_show: list[str] | None = None,
    variable_prefix: str = "",
    estimate_type_variable_name: str = "Statistic",
    ci_level: float = 0.95,
) -> IntoFrameT:
    """
    Create a formatted table of estimates with option of statistics to report.

    Parameters
    ----------
    round_output : bool|int|None, optional
        Rounding rule for display.
    estimates_to_show : list[str] | None, optional
        List of estimate types to include. Options: "estimate", "se", "t", "p", "ci".
        Default is ["estimate", "se"].
    variable_prefix : str, optional
        Prefix to add to variable column names. Default is "".
    estimate_type_variable_name : str, optional
        Name for the column indicating statistic type. Default is "Statistic".
    ci_level : float, optional
        Confidence interval level for "ci" estimates. Default is 0.95.

    Returns
    -------
    IntoFrameT
        Formatted table with estimates arranged by statistic type.
    """
    if estimates_to_show is None:
        estimates_to_show = ["estimate", "se"]

    df_ordered = []
    nw_ordered = []
    col_sort = "__order_output_table__"
    for index, esti in enumerate(estimates_to_show):
        dfi = None
        if esti.lower() == "estimate":
            dfi = self.df_estimates

        elif esti.lower() == "se" and self.df_replicates is not None:
            dfi = self.df_ses
        elif esti.lower() == "t" and self.df_replicates is not None:
            dfi = self._df_t()
        elif esti.lower() == "p" and self.df_replicates is not None:
            dfi = self._df_p()
        elif esti.lower() == "ci" and self.df_replicates is not None:
            dfi = self._df_ci(ci_level=ci_level)
        else:
            message = f"{esti} not allowed for estimates_to_show"
            logger.error(message)
            raise Exception(message)

        if dfi is not None:
            nwi = NarwhalsType(dfi)
            nw_ordered.append(nwi)
            dfi = nwi.to_polars()
            df_ordered.append(
                dfi.with_columns(
                    [
                        pl.lit(index).alias(col_sort),
                        pl.lit(esti.lower()).alias(estimate_type_variable_name),
                    ]
                )
            )

    col_row_index = "___estimate_row_count___"
    df_ordered[0] = df_ordered[0].with_row_index(col_row_index)
    df_display = concat_wrapper(df_ordered, how="diagonal").lazy()

    sort_vars = self.variable_ids + self.summarize_vars
    df_display = df_display.sort(sort_vars + [col_sort]).with_columns(
        pl.col(col_row_index).forward_fill()
    )
    df_display = df_display.sort([col_row_index] + [col_sort]).drop(col_row_index)

    #   Clear extraneous information
    with_clear = []
    for coli in sort_vars:
        c_col = pl.col(coli)
        with_clear.append(
            pl.when(pl.col(col_sort) != 0)
            .then(pl.lit(""))
            .otherwise(c_col.cast(pl.String))
            .alias(coli)
        )

    select_order = sort_vars + [estimate_type_variable_name]
    remaining = []
    rename = {}
    for coli in df_display.lazy.collect_schema().names():
        if coli not in select_order and coli != col_sort:
            if variable_prefix != "":
                rename[coli] = f"{variable_prefix}{coli}"

            remaining.append(coli)

    df_display = df_display.with_columns(with_clear).select(
        select_order + remaining
    )
    #   Round?
    if round_output:
        rounding = deepcopy(self.rounding)
        rounding.set_round_digits(round_output)

        if (
            len(rounding.cols_n) == 0
            and len(rounding.cols_round) == 0
            and not rounding.round_all
        ):
            #   Nothing set to round, round all
            rounding.cols_round = remaining

        df_display = self.round_results(
            df=df_display, rounding=rounding, display_only=True
        )

    if len(rename):
        df_display = df_display.rename(rename)
    return nw_ordered[0].lazy().from_polars(df_display)

Statistics

Parameters:

Name Type Description Default
stats (list[str],)

List of statistics to calculate (mean, median, etc.) Call Statistics.available_stats() for options

required
formula str

formulaic (or R)-style formula for defining statistics to be calculated. The default is "". This takes precedence over columns

''
columns list[str] | str | None

List of columns to calculate statistics over. The default is None.

None
quantile_interpolated bool

Use linear interpolation (census-style) for quantiles. The default is False.

False
quantile_interpolated_interval int

If quantile_interpolated, what is the bin interval? The default is 2500.

2500
Source code in src\survey_kit\statistics\statistics.py
class Statistics:
    """
    Parameters
    ----------
    stats : list[str],
        List of statistics to calculate (mean, median, etc.)
        Call Statistics.available_stats() for options
    formula : str, optional
        formulaic (or R)-style formula for defining statistics to be calculated.
        The default is "".  This takes precedence over columns
    columns : list[str]|str|None, optional
        List of columns to calculate statistics over. The default is None.
    quantile_interpolated : bool, optional
        Use linear interpolation (census-style) for quantiles. The default is False.
    quantile_interpolated_interval : int, optional
        If quantile_interpolated, what is the bin interval? The default is 2500.

    """
    def __init__(
        self,
        stats: list[str],
        formula: str = "",
        columns: list[str] | str | None = None,
        quantile_interpolated: bool = False,
        quantile_interpolated_interval: int = 2500,
    ):

        #   Input parsing/set defaults
        if columns is None:
            columns = []
        elif type(columns) is str:
            columns = [columns]

        self.formula = formula
        self.columns = columns
        self.quantile_interpolated = quantile_interpolated
        self.quantile_interpolated_interval = quantile_interpolated_interval
        self.stats = stats

    @nw.narwhalify
    def calculate(
        self,
        df: IntoFrameT,
        weight: str = "",
        by: dict[str, list[str]] | None = None,
        summarize_vars: list | None = None,
        rounding: Rounding | None = None,
        allow_slow_pandas: bool = False,
    ):
        nw_type = NarwhalsType(df)

        if summarize_vars is None:
            summarize_vars = []
        if rounding is None:
            rounding = Rounding(round_output=False)

        if by is None:
            by = {"All": []}

        if type(by) is list:
            by = {f"{i}":itemi for i, itemi in enumerate(by)}

        if self.formula != "":
            #   It's a formula, process accordingly
            df_summary = nw.from_native(
                Formula(self.formula).get_model_matrix(df)
            ).lazy_backend(nw_type)
            cols_summary = df_summary.collect_schema().names()
        else:
            #   It's a variable list
            if len(self.columns):
                cols = []
                for coli in self.columns:
                    cols.extend(columns_from_list(df=df, columns=[coli]))
                df_summary = df.select(cols)
                cols_summary = cols
            else:
                cols_summary = df.lazy_backend(nw_type).collect_schema().names()

        #   Keep the weights
        if (
            weight != ""
            and weight not in df_summary.lazy_backend(nw_type).collect_schema().names()
        ):
            df_summary = concat_wrapper(
                [df_summary, df.select(weight)], how="horizontal"
            )

        if len(summarize_vars):
            df_summary = concat_wrapper(
                [
                    drop_if_exists(df_summary,summarize_vars), 
                    df.select(summarize_vars)
                ], 
                how="horizontal"
            )

        #   Rename the stats for more useful table headers
        stats_rename = {
            "count": "n, weighted",
            "rawcount": "n",
            "weight": "n, weighted",
        }

        #   Same with the "modifiers"
        modifiers_output = {
            "not0": " (not 0)",
            "is0": " (== 0)",
            "notmissing": " (not null)",
            "share": " (share)",
            "missing": " (missing)",
        }

        #   Process the stats
        stats_headers = {}
        stats_dict = {}
        for stati in self.stats:
            stat_mod = stati.split("|")

            stati_raw = stat_mod[0]

            modifier = ""
            mod_header = ""
            if len(stat_mod) == 2:
                modifier = stat_mod[1]

                if modifier in modifiers_output.keys():
                    mod_header = modifiers_output[modifier]

            if stati_raw in stats_rename.keys():
                stat_headeri = stats_rename[stati_raw]
            else:
                stat_headeri = stati_raw
            stats_headers[stati] = f"{stat_headeri}{mod_header}"

            if modifier != "":
                cols_include = [f"{coli}|{modifier}" for coli in cols_summary]
            else:
                cols_include = cols_summary.copy()
            stats_dict = column_stats_builder(
                column_stats=stats_dict,
                cols_include=cols_include,
                df=df_summary,
                stat=[stati_raw],
            )

        summary_tables = calculate_by(
            df=df_summary,
            column_stats=stats_dict,
            by=by,
            always_return_as_collection=True,
            weight=weight,
            quantile_interpolated=self.quantile_interpolated,
            quantile_interpolated_interval=self.quantile_interpolated_interval,
            allow_slow_pandas=allow_slow_pandas,
        )

        suffixes = {}

        for stati in self.stats:
            stat_mod = stati.split("|")
            stat_onlyi = stat_mod[0]
            if len(stat_mod) == 2:
                modifier = stat_mod[1]
            else:
                modifier = ""

            suffixes[stati] = self.stat_suffix(stat_onlyi, modifier)

        stat_cols_final = None
        default_index = "___index___"

        for keyi, valuei in summary_tables.items():
            valuei = nw.from_native(valuei)
            b_default_index = False

            if keyi in by.keys():
                index = list_input(by[keyi])

                if index is None:
                    index = default_index
                elif len(index) == 0:
                    index = default_index
            else:
                index = default_index

            if index == default_index:
                #   Just use the row number as the index
                valuei = (
                    valuei.lazy()
                    .collect()
                    .with_row_index(name=index)
                    .lazy_backend(nw_type)
                )
                index = [default_index]
                b_default_index = True

            summaries_by_var = []

            #   Reshape to wide
            for coli in cols_summary:
                #   Catch if it's been renamed, like n->rawcount
                (coli, _, coli_original) = _check_special_modifiers(coli)

                cols_stats = [f"{coli}_{suffixi}" for suffixi in set(suffixes.values())]
                keep_list = index + cols_stats

                summaryi = valuei.select(keep_list)

                if stat_cols_final is None:
                    stat_cols_final = [
                        f"{stats_headers[keyi]}" for keyi in stats_headers.keys()
                    ]

                summaryi = summaryi.rename(
                    {
                        f"{coli}_{suffixes[keyi]}": stats_headers[keyi]
                        for keyi in stats_headers.keys()
                    }
                )
                if b_default_index:
                    summaryi = summaryi.drop(index)
                    keep_list_final = ["Variable"] + list(
                        dict.fromkeys(stats_headers.values())
                    )
                else:
                    keep_list_final = (
                        ["Variable"]
                        + index
                        + list(dict.fromkeys(stats_headers.values()))
                    )

                summaryi = summaryi.with_columns(
                    nw.lit(coli_original).alias("Variable")
                ).select(keep_list_final)
                summaries_by_var.append(summaryi)

            valuei = concat_wrapper(summaries_by_var, how="vertical")
            # summary_tables[keyi] = Compress(valuei,
            #                                 no_boolean=True)
            summary_tables[keyi] = valuei

        cols_by = []
        for keyi, valuei in summary_tables.items():
            cols_by.extend(
                list(
                    set(
                        summary_tables[keyi].lazy().collect_schema().names()
                    ).difference(stat_cols_final + cols_by)
                )
            )
            cols_by.remove("Variable")

        cols_dedupped = list(set(stat_cols_final))
        if len(cols_dedupped) != len(stat_cols_final):
            stat_cols_final = _columns_original_order(
                cols_unordered=cols_dedupped, cols_ordered=stat_cols_final
            )
        keep_order = ["Variable"] + cols_by + stat_cols_final
        output_table = concat_wrapper(
            list(summary_tables.values()), how="diagonal"
        ).select(keep_order)

        if len(cols_by):
            output_table = output_table.sort(cols_by)

        #   Get the information for rounding
        (cols_round, cols_n) = self.rounding_columns(
            output_table.drop(["Variable"] + summarize_vars)
        )

        rounding.cols_round = list(set(rounding.cols_round + cols_round))
        rounding.cols_n = list(set(rounding.cols_n + cols_n))

        return output_table.lazy_backend(nw_type)

    def stat_suffix(
        self=None,
        Statistic: str = "",
        #   not0, missing, nonmissing
        modifier: str = "",
    ) -> str:
        if modifier != "":
            modifier_suffix = f"_{modifier}"
        else:
            modifier_suffix = ""

        if Statistic in ["mean", "sum", "var", "std", "max", "min", "first", "gini"]:
            suffix = Statistic + modifier_suffix
        elif Statistic == "median":
            suffix = "q0_5" + modifier_suffix
        elif Statistic.startswith("q") or Statistic.startswith("p"):
            quantile = float(Statistic.replace("q", "").replace("p", "")) / 100
            suffix = f"q{str(quantile).replace('.', '_')}" + modifier_suffix
        elif (
            Statistic.startswith("count")
            or Statistic.startswith("rawcount")
            or Statistic.startswith("share")
            or Statistic.startswith("rawshare")
            or Statistic == "n"
            or Statistic == "weight"
        ):
            if Statistic.startswith("count") or Statistic == "weight":
                count_prefix = "n"
            elif Statistic.startswith("rawcount") or Statistic == "n":
                count_prefix = "rawn"
            elif Statistic.startswith("share"):
                count_prefix = "share"
            elif Statistic.startswith("rawshare"):
                count_prefix = "rawshare"

            count_suffix = ""
            suffixes = ["_not0", "_is0", "_notmissing", "_missing", "_share"]
            for si in suffixes:
                if Statistic.endswith(si):
                    count_suffix = si

            suffix = f"{count_prefix}{count_suffix}{modifier_suffix}"

        try:
            return suffix
        except:
            message = f"{Statistic} is not a valid statistic"
            logger.error(message)
            raise Exception(message)

    @nw.narwhalify
    def rounding_columns(self, df: IntoFrameT) -> tuple[list[str], list[str]]:
        cols_n = [
            "n",
            "n (missing)",
            "n (not null)",
            "n (not 0)",  # ,
            # "n, weighted",
            # "n missing, weighted",
            # "n (not null), weighted",
            # "n (not 0), weighted"
        ]
        columns = df.lazy().collect_schema().names()
        cols_n = list(set(cols_n).intersection(columns))
        cols_round = list(set(columns).difference(cols_n))

        return (cols_round, cols_n)

    def available_stats():
        examples = [
            "mean",
            "sum",
            "median",
            "q10",
            "q97.5",
            "std",
            "var",
            "max",
            "min",
            "weight",
            "n",
            "gini",
        ]
        logger.info("")
        logger.info(f"Some examples: {examples}")
        logger.info("")
        logger.info(
            "Stats can also have 'modifiers' appended to them separated by a pipe ('|'), including"
        )
        modifiers = ["not0", "missing", "notmissing", "is0", "share"]
        logger.info(modifiers)

        logger.info("")
        logger.info("For quantiles, pass q{number} where number in (0,100)")
        logger.info("")
        logger.info("n is the unweighted count and weight is the weighted count")
        logger.info(f"     for n/weight: {modifiers}")

        modifiers = ["not0"]
        logger.info(f"     for all other stats: {modifiers}")

        examples = [
            "mean|not0",
            "sum|not0",
            "median",
            "min|not0",
            "count|missing",
            "n|notmissing",
            "n|share",
        ]
        logger.info("")
        logger.info(f"""Some examples: {examples}""")

Replicates

Bases: Serializable

Configuration for replicate weight variance estimation.

Replicates defines the structure of replicate weights in survey data for calculating proper standard errors that account for complex sample designs. Supports two variance estimation methods: Bootstrap and Balanced Repeated Replication (BRR).

Replicate weights are commonly used by statistical agencies (Census Bureau, BLS, etc.) to enable users to calculate design-based standard errors without sharing the full sample design details (strata, clusters, etc.).

Parameters:

Name Type Description Default
weight_stub str

Prefix for weight column names. For example, if weight_stub="weight_", the function looks for columns: weight_0, weight_1, ..., weight_n where weight_0 is the base weight and weight_1 through weight_n are the replicate weights.

required
df IntoFrameT | None

Dataframe containing the weight columns. Used to automatically detect the number of replicates. Default is None.

None
n_replicates int | None

Number of replicate weights (excluding the base weight). If None, will be inferred from df. Default is None.

None
bootstrap bool

Type of variance estimation: - True: Bootstrap variance (standard bootstrap resampling) - False: Balanced Repeated Replication (BRR) variance If you don't know which to use, use bootstrap=True. Default is False.

False

Attributes:

Name Type Description
weight_stub str

The weight column prefix.

n_replicates int

Number of replicate weights.

bootstrap bool

Variance estimation method flag.

rep_list list[str]

List of all weight column names (base + replicates).

Raises:

Type Description
Exception

If neither df nor n_replicates is provided.

Examples:

Infer number of replicates from dataframe:

>>> from survey_kit.statistics.replicates import Replicates
>>> replicates = Replicates(
...     df=df,
...     weight_stub="weight_",
...     bootstrap=True
... )
>>> print(replicates.n_replicates)
>>> print(replicates.rep_list)

Specify number of replicates directly:

>>> replicates = Replicates(
...     weight_stub="weight_",
...     n_replicates=80,
...     bootstrap=False  # Use BRR variance
... )

Use with StatCalculator:

>>> from survey_kit.statistics.calculator import StatCalculator
>>> from survey_kit.statistics.statistics import Statistics
>>> 
>>> stats = Statistics(stats=["mean", "median"], columns=["income"])
>>> replicates = Replicates(weight_stub="weight_", n_replicates=80, bootstrap=True)
>>> 
>>> sc = StatCalculator(
...     df=df,
...     statistics=stats,
...     weight="weight_0",
...     replicates=replicates
... )
>>> sc.print()

Use with multiple imputation:

>>> from survey_kit.statistics.multiple_imputation import mi_ses_from_function
>>> 
>>> arguments = {
...     "statistics": stats,
...     "replicates": replicates,
...     "weight": "weight_0"
... }
>>> 
>>> mi_results = mi_ses_from_function(
...     delegate=StatCalculator,
...     df_implicates=srmi.df_implicates,
...     df_noimputes=weights_df,
...     arguments=arguments,
...     join_on=["Variable"]
... )
Notes

Bootstrap variance (bootstrap=True): - Standard bootstrap resampling variance estimation - SE = sqrt(Σ(θ̂ᵣ - θ̂₀)² / R) where θ̂₀ is the base weight estimate, θ̂ᵣ are replicate estimates, and R is number of replicates - Use when you generated your own bootstrap weights

BRR variance (bootstrap=False): - Balanced Repeated Replication variance - Used by Census Bureau and other statistical agencies - SE = sqrt(4 Σ(θ̂ᵣ - θ̂)² / R) where θ̄ᵣ is the mean across all replicate estimates - Use when working with official government surveys that provide BRR weights

The rep_list attribute provides all weight column names in order: [weight_0, weight_1, ..., weight_n] where weight_0 is the base weight.

See Also

StatCalculator : Calculate statistics with replicate weight SEs mi_ses_from_function : Combine replicate weights with multiple imputation

Source code in src\survey_kit\statistics\replicates.py
class Replicates(Serializable):
    """
    Configuration for replicate weight variance estimation.

    Replicates defines the structure of replicate weights in survey data for
    calculating proper standard errors that account for complex sample designs.
    Supports two variance estimation methods: Bootstrap and Balanced Repeated
    Replication (BRR).

    Replicate weights are commonly used by statistical agencies (Census Bureau, BLS,
    etc.) to enable users to calculate design-based standard errors without sharing
    the full sample design details (strata, clusters, etc.).

    Parameters
    ----------
    weight_stub : str
        Prefix for weight column names. For example, if weight_stub="weight_",
        the function looks for columns: weight_0, weight_1, ..., weight_n
        where weight_0 is the base weight and weight_1 through weight_n are
        the replicate weights.
    df : IntoFrameT | None, optional
        Dataframe containing the weight columns. Used to automatically detect
        the number of replicates. Default is None.
    n_replicates : int | None, optional
        Number of replicate weights (excluding the base weight). If None,
        will be inferred from df. Default is None.
    bootstrap : bool, optional
        Type of variance estimation:
        - True: Bootstrap variance (standard bootstrap resampling)
        - False: Balanced Repeated Replication (BRR) variance
        If you don't know which to use, use bootstrap=True. Default is False.

    Attributes
    ----------
    weight_stub : str
        The weight column prefix.
    n_replicates : int
        Number of replicate weights.
    bootstrap : bool
        Variance estimation method flag.
    rep_list : list[str]
        List of all weight column names (base + replicates).

    Raises
    ------
    Exception
        If neither df nor n_replicates is provided.

    Examples
    --------
    Infer number of replicates from dataframe:

    >>> from survey_kit.statistics.replicates import Replicates
    >>> replicates = Replicates(
    ...     df=df,
    ...     weight_stub="weight_",
    ...     bootstrap=True
    ... )
    >>> print(replicates.n_replicates)
    >>> print(replicates.rep_list)

    Specify number of replicates directly:

    >>> replicates = Replicates(
    ...     weight_stub="weight_",
    ...     n_replicates=80,
    ...     bootstrap=False  # Use BRR variance
    ... )

    Use with StatCalculator:

    >>> from survey_kit.statistics.calculator import StatCalculator
    >>> from survey_kit.statistics.statistics import Statistics
    >>> 
    >>> stats = Statistics(stats=["mean", "median"], columns=["income"])
    >>> replicates = Replicates(weight_stub="weight_", n_replicates=80, bootstrap=True)
    >>> 
    >>> sc = StatCalculator(
    ...     df=df,
    ...     statistics=stats,
    ...     weight="weight_0",
    ...     replicates=replicates
    ... )
    >>> sc.print()

    Use with multiple imputation:

    >>> from survey_kit.statistics.multiple_imputation import mi_ses_from_function
    >>> 
    >>> arguments = {
    ...     "statistics": stats,
    ...     "replicates": replicates,
    ...     "weight": "weight_0"
    ... }
    >>> 
    >>> mi_results = mi_ses_from_function(
    ...     delegate=StatCalculator,
    ...     df_implicates=srmi.df_implicates,
    ...     df_noimputes=weights_df,
    ...     arguments=arguments,
    ...     join_on=["Variable"]
    ... )

    Notes
    -----
    **Bootstrap variance** (bootstrap=True):
    - Standard bootstrap resampling variance estimation
    - SE = sqrt(Σ(θ̂ᵣ - θ̂₀)² / R) where θ̂₀ is the base weight estimate, θ̂ᵣ are replicate estimates, and R is number of replicates
    - Use when you generated your own bootstrap weights

    **BRR variance** (bootstrap=False):
    - Balanced Repeated Replication variance
    - Used by Census Bureau and other statistical agencies
    - SE = sqrt(4 Σ(θ̂ᵣ - θ̂)² / R) where θ̄ᵣ is the mean across all replicate estimates
    - Use when working with official government surveys that provide BRR weights

    The rep_list attribute provides all weight column names in order:
    [weight_0, weight_1, ..., weight_n] where weight_0 is the base weight.

    See Also
    --------
    StatCalculator : Calculate statistics with replicate weight SEs
    mi_ses_from_function : Combine replicate weights with multiple imputation
    """
    _save_suffix = "replicates"

    def __init__(
        self,
        weight_stub: str,
        df: IntoFrameT | None = None,
        n_replicates: int | None = None,
        bootstrap: bool = False,
    ):
        if n_replicates is None and df is None:
            message = "You must pass either df or n_replicates to Replicates"
            logger.error(message)
            raise Exception(message)

        if n_replicates is None:
            cols_replicates = columns_from_list(df=df, columns=f"{weight_stub}*")
            n_replicates = len(set(cols_replicates).difference([f"{weight_stub}0"]))
        elif df is not None:
            logger.info("Passed both df and n_replicates to Replicates, ignoring df")

        self.weight_stub = weight_stub
        self.n_replicates = n_replicates
        self.bootstrap = bootstrap

        self.rep_list = [f"{weight_stub}{repi}" for repi in range(0, n_replicates + 1)]

ComparisonItem

Helpers for specifying comparisons in StatCalculator and MultipleImputation.

Provides two types of comparisons:

  • Variable: Compare different variables (e.g., income vs income_2)
  • Column: Compare different statistics (e.g., mean vs median)
Source code in src\survey_kit\statistics\comparisons.py
class ComparisonItem:
    """
    Helpers for specifying comparisons in [StatCalculator][survey_kit.statistics.calculator.StatCalculator] 
    and [MultipleImputation][survey_kit.statistics.multiple_imputation.MultipleImputation].

    Provides two types of comparisons:

    - Variable: Compare different variables (e.g., income vs income_2)
    - Column: Compare different statistics (e.g., mean vs median)

    """
    class Variable:
        """
        Specify a comparison between two variables.

        Used to compare different variables within the same dataset, such as
        comparing income from two sources or comparing outcomes across groups.

        Parameters
        ----------
        value1 : str
            First variable value to compare (e.g., "income").
        value2 : str
            Second variable value to compare (e.g., "income_2").
        column : str, optional
            Name of the column containing variable names in the estimates dataframe.
            Default is "Variable".
        name : str, optional
            Name for the comparison result. If empty, uses f"{value1}_vs_{value2}".
            Default is "".

        Examples
        --------
        >>> from survey_kit.statistics.calculator import ComparisonItem
        >>> 
        >>> # Compare two income variables
        >>> comp = ComparisonItem.Variable(
        ...     value1="wage_income",
        ...     value2="self_employment_income",
        ...     name="wage_vs_self_employment"
        ... )
        >>> 
        >>> comparison = sc.compare(
        ...     sc,
        ...     difference=False,
        ...     compare_list_variables=[comp]
        ... )["ratio"]
        """
        def __init__(self, value1: str, value2: str, column: str="Variable", name: str = ""):
            self.column = column
            self.value1 = value1
            self.value2 = value2
            self.name = name

    class Column:
        """
        Specify a comparison between two statistics/columns.

        Used to compare different statistics for the same variable, such as
        comparing mean vs median or comparing different quantiles.

        Parameters
        ----------
        column1 : str
            First statistic column to compare (e.g., "mean").
        column2 : str
            Second statistic column to compare (e.g., "median").
        name : str, optional
            Name for the comparison result. If empty, uses f"c({column1},{column2})".
            Default is "".

        Examples
        --------
        >>> from survey_kit.statistics.calculator import ComparisonItem
        >>> 
        >>> # Compare mean vs median
        >>> comp = ComparisonItem.Column(
        ...     column1="mean",
        ...     column2="median (not 0)",
        ...     name="median_mean_diff"
        ... )
        >>> 
        >>> comparison = sc.compare(
        ...     sc,
        ...     ratio=False,
        ...     compare_list_columns=[comp]
        ... )["difference"]
        """
        def __init__(self, column1: str, column2: str, name: str = ""):
            self.column1 = column1
            self.column2 = column2

            if name == "":
                name = f"c({column1},{column2})"
            self.name = name

Column

Specify a comparison between two statistics/columns.

Used to compare different statistics for the same variable, such as comparing mean vs median or comparing different quantiles.

Parameters:

Name Type Description Default
column1 str

First statistic column to compare (e.g., "mean").

required
column2 str

Second statistic column to compare (e.g., "median").

required
name str

Name for the comparison result. If empty, uses f"c({column1},{column2})". Default is "".

''

Examples:

>>> from survey_kit.statistics.calculator import ComparisonItem
>>> 
>>> # Compare mean vs median
>>> comp = ComparisonItem.Column(
...     column1="mean",
...     column2="median (not 0)",
...     name="median_mean_diff"
... )
>>> 
>>> comparison = sc.compare(
...     sc,
...     ratio=False,
...     compare_list_columns=[comp]
... )["difference"]
Source code in src\survey_kit\statistics\comparisons.py
class Column:
    """
    Specify a comparison between two statistics/columns.

    Used to compare different statistics for the same variable, such as
    comparing mean vs median or comparing different quantiles.

    Parameters
    ----------
    column1 : str
        First statistic column to compare (e.g., "mean").
    column2 : str
        Second statistic column to compare (e.g., "median").
    name : str, optional
        Name for the comparison result. If empty, uses f"c({column1},{column2})".
        Default is "".

    Examples
    --------
    >>> from survey_kit.statistics.calculator import ComparisonItem
    >>> 
    >>> # Compare mean vs median
    >>> comp = ComparisonItem.Column(
    ...     column1="mean",
    ...     column2="median (not 0)",
    ...     name="median_mean_diff"
    ... )
    >>> 
    >>> comparison = sc.compare(
    ...     sc,
    ...     ratio=False,
    ...     compare_list_columns=[comp]
    ... )["difference"]
    """
    def __init__(self, column1: str, column2: str, name: str = ""):
        self.column1 = column1
        self.column2 = column2

        if name == "":
            name = f"c({column1},{column2})"
        self.name = name

Variable

Specify a comparison between two variables.

Used to compare different variables within the same dataset, such as comparing income from two sources or comparing outcomes across groups.

Parameters:

Name Type Description Default
value1 str

First variable value to compare (e.g., "income").

required
value2 str

Second variable value to compare (e.g., "income_2").

required
column str

Name of the column containing variable names in the estimates dataframe. Default is "Variable".

'Variable'
name str

Name for the comparison result. If empty, uses f"{value1}vs". Default is "".

''

Examples:

>>> from survey_kit.statistics.calculator import ComparisonItem
>>> 
>>> # Compare two income variables
>>> comp = ComparisonItem.Variable(
...     value1="wage_income",
...     value2="self_employment_income",
...     name="wage_vs_self_employment"
... )
>>> 
>>> comparison = sc.compare(
...     sc,
...     difference=False,
...     compare_list_variables=[comp]
... )["ratio"]
Source code in src\survey_kit\statistics\comparisons.py
class Variable:
    """
    Specify a comparison between two variables.

    Used to compare different variables within the same dataset, such as
    comparing income from two sources or comparing outcomes across groups.

    Parameters
    ----------
    value1 : str
        First variable value to compare (e.g., "income").
    value2 : str
        Second variable value to compare (e.g., "income_2").
    column : str, optional
        Name of the column containing variable names in the estimates dataframe.
        Default is "Variable".
    name : str, optional
        Name for the comparison result. If empty, uses f"{value1}_vs_{value2}".
        Default is "".

    Examples
    --------
    >>> from survey_kit.statistics.calculator import ComparisonItem
    >>> 
    >>> # Compare two income variables
    >>> comp = ComparisonItem.Variable(
    ...     value1="wage_income",
    ...     value2="self_employment_income",
    ...     name="wage_vs_self_employment"
    ... )
    >>> 
    >>> comparison = sc.compare(
    ...     sc,
    ...     difference=False,
    ...     compare_list_variables=[comp]
    ... )["ratio"]
    """
    def __init__(self, value1: str, value2: str, column: str="Variable", name: str = ""):
        self.column = column
        self.value1 = value1
        self.value2 = value2
        self.name = name