Basic Statistics and Standard¶
summary ¶
summary(
df: IntoFrameT,
columns: list[str] | str | None = None,
weight: str = "",
print: bool = True,
stats: list[str] | str | None = None,
detailed: bool = False,
additional_stats: list[str] | str | None = None,
by: list[str] | str | None = None,
quantile_interpolated: bool = False,
drb_round: bool = False,
) -> IntoFrameT
Generate summary statistics for a dataframe.
A convenience function for quickly exploring data. Calculates common summary statistics (mean, std, min, max, etc.) with optional weighting and grouping. Works with any dataframe backend (Polars, Pandas, Arrow, DuckDB) via Narwhals.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
IntoFrameT
|
Input dataframe to summarize. |
required |
columns
|
list[str] | str | None
|
Columns to summarize. Supports wildcards (e.g., "income_*"). If None, summarizes all columns. Default is None. |
None
|
weight
|
str
|
Column name for weights. If provided, calculates weighted statistics. Default is "" (unweighted). |
''
|
print
|
bool
|
Print the summary table. Default is True. |
True
|
stats
|
list[str] | str | None
|
Statistics to calculate. If None, uses default set. See Statistics.available_stats() for options. Default is None. |
None
|
detailed
|
bool
|
Use detailed statistics (includes quartiles). Overrides stats parameter. Default is False. |
False
|
additional_stats
|
list[str] | str | None
|
Additional statistics beyond the default/detailed set. Examples: ["q10", "q90", "n|not0", "share|not0"]. Default is None. |
None
|
by
|
list[str] | str | None
|
Column(s) to group by before calculating statistics. Default is None. |
None
|
quantile_interpolated
|
bool
|
Use interpolated quantiles (vs exact values from data). Default is False. |
False
|
drb_round
|
bool
|
Apply DRB (Disclosure Review Board) rounding rules for 4 significant digits. Useful for publication-ready output. Default is False. |
False
|
Returns:
| Type | Description |
|---|---|
IntoFrameT
|
Dataframe of summary statistics (same type as input df). |
Examples:
Basic unweighted summary:
>>> from survey_kit.utilities.dataframe import summary
>>> from survey_kit.utilities.random import RandomData
>>>
>>> df = RandomData(n_rows=1000, seed=123).integer("income", 0, 100_000).to_df()
>>> summary(df)
Weighted summary:
By groups:
Detailed statistics with rounding:
Custom statistics:
>>> from survey_kit.statistics.statistics import Statistics
>>> Statistics.available_stats() # See options
>>> summary(df, additional_stats=["q10", "q90", "n|not0", "share|not0"])
Specific columns with wildcards:
Get results without printing:
Notes
Default statistics (if stats=None and detailed=False): - n: Count of non-missing values - n|missing: Count of missing values - mean: Average - std: Standard deviation - min: Minimum - max: Maximum
Detailed statistics (if detailed=True): - Adds: q25, q50 (median), q75
The "|not0" suffix excludes zeros: "n|not0" counts non-zero values, "share|not0" calculates proportion among non-zero observations.
See Also
StatCalculator : For standard errors with replicate weights Statistics : For defining custom statistics
Source code in src\survey_kit\utilities\dataframe.py
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 | |
StatCalculator ¶
Bases: Serializable
A comprehensive class for calculating statistical estimates with optional replicate weights.
StatCalculator provides a unified interface for computing various statistics on datasets, with support for weighted calculations, replicate weight standard errors, grouping, and comparison operations. It handles both simple estimates and complex bootstrap or replicate weight variance estimation.
The class supports: - Multiple statistics calculated simultaneously - Weighted and unweighted estimates - Replicate weight and bootstrap standard errors - Grouping/stratification via by - Automatic disclosure avoidance rounding (which can be disabled) - Comparison operations between sets of estimate
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
IntoFrameT
|
A narwhals-compliant dataframe |
None
|
statistics
|
list[Statistics] | Statistics | None
|
Statistics object(s) defining what columns and statistics to calculate. Each Statistics object specifies variables and statistical measures. Default is None. |
None
|
weight
|
str
|
Column name for survey weights if weighted estimates are desired. Default is "" (unweighted). |
''
|
scale_wgts_to
|
float
|
Value to scale weights to sum to (proportional adjustment). Default is 0.0 (no scaling). |
0.0
|
replicates
|
Replicates | None
|
Replicates object for calculating replicate weight standard errors. Generates weight lists from stub names and counts. Default is None. |
None
|
by
|
dict[str, list[str]] | list | None
|
Dictionary defining grouping variables for stratified estimates. Keys are group names, values are lists of grouping variables. Example: {"state":["st"], "county":["st","cty"]}. Default is None. |
None
|
display
|
bool
|
Whether to print results to log automatically. Default is True. |
True
|
display_all_vars
|
bool
|
Print all variables or truncate display. Default is True. |
True
|
display_max_vars
|
int
|
Maximum variables to display when display_all_vars=False. Default is 20. |
20
|
round_output
|
bool | int
|
Apply rounding to output (True for DRB rules, int for sig digits). Default is True. |
False
|
calculate
|
bool
|
Internal parameter - whether to run calculations immediately. Default is True. |
True
|
Attributes:
| Name | Type | Description |
|---|---|---|
df_estimates |
IntoFrameT, narwhals compliant dataframe
|
Main estimates dataframe with calculated statistics. |
df_ses |
IntoFrameT, narwhals compliant dataframe
|
Standard errors dataframe (populated when replicates are used). |
df_replicates |
IntoFrameT, narwhals compliant dataframe
|
Full replicate estimates for additional analysis. |
variable_ids |
list[str]
|
Column names that identify unique estimates/variables. |
summarize_vars |
list[str]
|
All grouping variables from by (flattened). |
bootstrap |
bool
|
Whether bootstrap standard errors are to be calculated, as opposed to replicate weights. |
Examples:
Basic usage with simple statistics:
>>> from NEWS.CodeUtilities.Python.SummaryStats import Statistics
>>> stats = Statistics(columns=["income", "age"], statistics=["mean", "median"])
>>> sc = StatCalculator(df=my_data, statistics=stats, weight="survey_wgt")
>>> sc.print()
With replicate weights for standard errors:
>>> from NEWS.CodeUtilities.Python.SummaryStats import Replicates
>>> reps = Replicates(weight_stub="rep_wgt_", n_replicates=80)
>>> sc = StatCalculator(df=my_data, statistics=stats, replicates=reps)
>>> sc.print() # Will show standard errors
Grouped analysis:
>>> calc = StatCalculator(
... df=my_data,
... statistics=stats,
... by={"state": ["state_code"], "region": ["region_code"]}
... )
Comparison between two sets of estimates:
>>> sc_1 = StatCalculator(df=data1, statistics=stats)
>>> sc_2 = StatCalculator(df=data2, statistics=stats)
>>> comparison = sc_1.compare(sc_2)
>>> comparison["difference"].print()
Source code in src\survey_kit\statistics\calculator.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 | |
df_estimates
property
writable
¶
IntoFrameT : Main estimates dataframe containing calculated statistics.
This property provides access to the primary results table with all calculated statistics. Includes variable identifiers, grouping variables, and statistical estimates as columns.
df_replicates
property
writable
¶
IntoFrameT : Full replicate estimates dataframe.
Contains individual estimates for each replicate weight, allowing for custom variance calculations or additional analysis. Includes all columns from df_estimates plus a replicate identifier column. Only populated when replicates parameter is provided.
df_ses
property
writable
¶
IntoFrameT : Standard errors dataframe (when replicate weights are used).
Contains standard error estimates for all statistics calculated using replicate weight methods. Has the same structure as df_estimates but with standard errors instead of point estimates. Only populated when replicates parameter is provided.
compare ¶
compare(
compare_to,
difference: bool = True,
ratio: bool = True,
display: bool = True,
ratio_minus_1: bool = True,
compare_list_variables: list[Variable] | None = None,
compare_list_columns: list[Column] | None = None,
quietly: bool = False,
)
Compare this set of estimates to another set of estimates, including MultipleImputation estimates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
compare_to
|
StatCalculator | MultipleImputation
|
The other object to compare to. |
required |
difference
|
bool
|
Calculate and return the difference (with key "difference"). Default is True. |
True
|
ratio
|
bool
|
Calculate and return the ratio (with key "ratio"). Default is True. |
True
|
ratio_minus_1
|
bool
|
Rescale ratio by subtracting 1 from it. Default is True. |
True
|
display
|
bool
|
Print the difference/ratio to the log. Default is True. |
True
|
compare_list_variables
|
list[Variable] | None
|
List of variables to compare (i.e. compare rows from prior calculations) |
None
|
compare_list_columns
|
list[Column]
|
List of columns to compare For example if compare_list_variables = [ComparisonItem.Column("mean","median")] then compare the mean of 1 to the median of 2 |
None
|
quietly
|
bool
|
Suppress informational messages. Default is False. |
False
|
Returns:
| Type | Description |
|---|---|
dict[str, StatCalculator]
|
Dictionary with keys ["difference","ratio"] containing StatCalculator objects with the comparison estimates (with SEs if applicable). |
Source code in src\survey_kit\statistics\calculator.py
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 | |
concat_with ¶
Concatenate this with another StatCalculator object
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sc_concat
|
StatCalculator
|
Other mi object to concatenate with. |
required |
how
|
str
|
horizontal or vertical? Horizontal will actually do a join and vertical will just stack them The default is "horizontal". |
'horizontal'
|
Returns:
| Type | Description |
|---|---|
StatCalculator
|
|
Source code in src\survey_kit\statistics\calculator.py
drb_round_table ¶
drb_round_table(
columns: list | str | None = None,
columns_n: list | str | None = None,
columns_exclude: list | str | None = None,
round_all: bool = True,
digits: int = 4,
compress: bool = False,
) -> StatCalculator
Apply DRB (Disclosure Review Board) rounding rules to the estimates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
columns
|
list | str | None
|
Specific columns to round. Default is None. |
None
|
columns_n
|
list | str | None
|
Columns to treat as counts for rounding. Default is None. |
None
|
columns_exclude
|
list | str | None
|
Columns to exclude from rounding. Default is None. |
None
|
round_all
|
bool
|
Apply rounding to all numeric columns. Default is True. |
True
|
digits
|
int
|
Number of significant digits for rounding. Default is 4. |
4
|
compress
|
bool
|
Use compressed rounding format. Default is False. |
False
|
Returns:
| Type | Description |
|---|---|
StatCalculator
|
StatCalculator with DRB rounding applied. |
Source code in src\survey_kit\statistics\calculator.py
from_function ¶
from_function(
delegate: Callable,
estimate_ids: list | str,
df: IntoFrameT | None = None,
df_argument: str = "df",
arguments: dict | None = None,
weight: str = "",
replicates: Replicates | None = None,
scale_wgts_to: float = 0.0,
weight_argument_name: str = "weight",
by: dict[str, list[str]] | None = None,
display: bool = True,
display_all_vars: bool = True,
display_max_vars: int = 20,
round_output: bool | int = True,
) -> StatCalculator
Create a StatCalculator from a custom function that returns estimates.
This static method allows wrapping any function that returns estimates in a StatCalculator object for easy display and comparison.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
delegate
|
callable
|
Function that returns a table of estimates. Must accept weight parameter if replicates are used. |
required |
estimate_ids
|
list | str
|
Column names that identify each unique estimate. |
required |
df
|
LazyFrame | DataFrame
|
Dataframe passed as "df" argument to delegate. Allows dynamic subsetting with by. Default is None. |
None
|
df_argument
|
str
|
Name of argument with data. Defaults is "df". |
'df'
|
arguments
|
dict
|
Static arguments (other than weight) passed to delegate. Default is None. |
None
|
weight
|
str
|
Weight column name for weighted statistics. Default is "". |
''
|
replicates
|
Replicates | None
|
Replicates object for replicate weight standard errors. Default is None. |
None
|
scale_wgts_to
|
float
|
Scale weights to sum to this value. Default is 0.0 (no scaling). |
0.0
|
weight_argument_name
|
str
|
Keyword argument name for passing weight to delegate. Default is "weight". |
'weight'
|
by
|
dict[str, list[str]] | None
|
Dictionary defining grouping variables for summary statistics. |
None
|
display
|
bool
|
Print results to log. Default is True. |
True
|
display_all_vars
|
bool
|
Print all variables rather than truncated summary. Default is True. |
True
|
display_max_vars
|
int
|
Maximum variables to print if display_all_vars=False. Default is 20. |
20
|
round_output
|
bool | int
|
Round the output. Default is True. |
True
|
Returns:
| Type | Description |
|---|---|
StatCalculator
|
StatCalculator object containing the function results with estimates, SEs, and replicates as applicable. |
Source code in src\survey_kit\statistics\calculator.py
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 | |
pipe ¶
Pipe a function to df_estimates, df_ses, and df_replicates (as necessary)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
function
|
Callable
|
Function to pipe. |
required |
*args
|
TYPE
|
arguments to function |
()
|
**kwargs
|
TYPE
|
keyword arguments to function |
{}
|
Returns:
| Type | Description |
|---|---|
StatCalculator
|
|
Source code in src\survey_kit\statistics\calculator.py
print ¶
print(
df: IntoFrameT | None = None,
round_output: bool | int | None = None,
estimates_per_page: int = 0,
sub_log: logging = None,
)
Print the estimates (with SEs if applicable) to the log.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
IntoFrameT
|
The estimates to display. Default is the estimates in self. |
None
|
round_output
|
bool | int | None
|
Rounding rule (True for DRB, integer for number of significant digits). Default is self's rounding rule. |
None
|
estimates_per_page
|
int
|
Repeat the header every k estimates. Defaults to 0 (don't repeat). |
0
|
sub_log
|
logging
|
Override logger. Default is None (no override). |
None
|
Returns:
| Type | Description |
|---|---|
None
|
|
Source code in src\survey_kit\statistics\calculator.py
round_results ¶
round_results(
df: IntoFrameT | None = None,
rounding: Rounding | None = None,
display_only: bool = False,
) -> IntoFrameT
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
IntoFrameT
|
Table of estimates. The default is the estimates in df_estimates |
None
|
rounding
|
Rounding | None
|
Rounding (True for DRB rules) and an integer for specific number of significant digits. The default is self's rounding. |
None
|
display_only
|
bool
|
If True, affects the display of numbers (casts to strings). The default is False. |
False
|
Returns:
| Name | Type | Description |
|---|---|---|
df |
IntoFrameT
|
The rounded estimates. |
Source code in src\survey_kit\statistics\calculator.py
table_of_estimates ¶
table_of_estimates(
round_output: bool | int | None = None,
estimates_to_show: list[str] | None = None,
variable_prefix: str = "",
estimate_type_variable_name: str = "Statistic",
ci_level: float = 0.95,
) -> IntoFrameT
Create a formatted table of estimates with option of statistics to report.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
round_output
|
bool | int | None
|
Rounding rule for display. |
None
|
estimates_to_show
|
list[str] | None
|
List of estimate types to include. Options: "estimate", "se", "t", "p", "ci". Default is ["estimate", "se"]. |
None
|
variable_prefix
|
str
|
Prefix to add to variable column names. Default is "". |
''
|
estimate_type_variable_name
|
str
|
Name for the column indicating statistic type. Default is "Statistic". |
'Statistic'
|
ci_level
|
float
|
Confidence interval level for "ci" estimates. Default is 0.95. |
0.95
|
Returns:
| Type | Description |
|---|---|
IntoFrameT
|
Formatted table with estimates arranged by statistic type. |
Source code in src\survey_kit\statistics\calculator.py
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | |
Statistics ¶
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
stats
|
(list[str],)
|
List of statistics to calculate (mean, median, etc.) Call Statistics.available_stats() for options |
required |
formula
|
str
|
formulaic (or R)-style formula for defining statistics to be calculated. The default is "". This takes precedence over columns |
''
|
columns
|
list[str] | str | None
|
List of columns to calculate statistics over. The default is None. |
None
|
quantile_interpolated
|
bool
|
Use linear interpolation (census-style) for quantiles. The default is False. |
False
|
quantile_interpolated_interval
|
int
|
If quantile_interpolated, what is the bin interval? The default is 2500. |
2500
|
Source code in src\survey_kit\statistics\statistics.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | |
Replicates ¶
Bases: Serializable
Configuration for replicate weight variance estimation.
Replicates defines the structure of replicate weights in survey data for calculating proper standard errors that account for complex sample designs. Supports two variance estimation methods: Bootstrap and Balanced Repeated Replication (BRR).
Replicate weights are commonly used by statistical agencies (Census Bureau, BLS, etc.) to enable users to calculate design-based standard errors without sharing the full sample design details (strata, clusters, etc.).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight_stub
|
str
|
Prefix for weight column names. For example, if weight_stub="weight_", the function looks for columns: weight_0, weight_1, ..., weight_n where weight_0 is the base weight and weight_1 through weight_n are the replicate weights. |
required |
df
|
IntoFrameT | None
|
Dataframe containing the weight columns. Used to automatically detect the number of replicates. Default is None. |
None
|
n_replicates
|
int | None
|
Number of replicate weights (excluding the base weight). If None, will be inferred from df. Default is None. |
None
|
bootstrap
|
bool
|
Type of variance estimation: - True: Bootstrap variance (standard bootstrap resampling) - False: Balanced Repeated Replication (BRR) variance If you don't know which to use, use bootstrap=True. Default is False. |
False
|
Attributes:
| Name | Type | Description |
|---|---|---|
weight_stub |
str
|
The weight column prefix. |
n_replicates |
int
|
Number of replicate weights. |
bootstrap |
bool
|
Variance estimation method flag. |
rep_list |
list[str]
|
List of all weight column names (base + replicates). |
Raises:
| Type | Description |
|---|---|
Exception
|
If neither df nor n_replicates is provided. |
Examples:
Infer number of replicates from dataframe:
>>> from survey_kit.statistics.replicates import Replicates
>>> replicates = Replicates(
... df=df,
... weight_stub="weight_",
... bootstrap=True
... )
>>> print(replicates.n_replicates)
>>> print(replicates.rep_list)
Specify number of replicates directly:
>>> replicates = Replicates(
... weight_stub="weight_",
... n_replicates=80,
... bootstrap=False # Use BRR variance
... )
Use with StatCalculator:
>>> from survey_kit.statistics.calculator import StatCalculator
>>> from survey_kit.statistics.statistics import Statistics
>>>
>>> stats = Statistics(stats=["mean", "median"], columns=["income"])
>>> replicates = Replicates(weight_stub="weight_", n_replicates=80, bootstrap=True)
>>>
>>> sc = StatCalculator(
... df=df,
... statistics=stats,
... weight="weight_0",
... replicates=replicates
... )
>>> sc.print()
Use with multiple imputation:
>>> from survey_kit.statistics.multiple_imputation import mi_ses_from_function
>>>
>>> arguments = {
... "statistics": stats,
... "replicates": replicates,
... "weight": "weight_0"
... }
>>>
>>> mi_results = mi_ses_from_function(
... delegate=StatCalculator,
... df_implicates=srmi.df_implicates,
... df_noimputes=weights_df,
... arguments=arguments,
... join_on=["Variable"]
... )
Notes
Bootstrap variance (bootstrap=True): - Standard bootstrap resampling variance estimation - SE = sqrt(Σ(θ̂ᵣ - θ̂₀)² / R) where θ̂₀ is the base weight estimate, θ̂ᵣ are replicate estimates, and R is number of replicates - Use when you generated your own bootstrap weights
BRR variance (bootstrap=False): - Balanced Repeated Replication variance - Used by Census Bureau and other statistical agencies - SE = sqrt(4 Σ(θ̂ᵣ - θ̂)² / R) where θ̄ᵣ is the mean across all replicate estimates - Use when working with official government surveys that provide BRR weights
The rep_list attribute provides all weight column names in order: [weight_0, weight_1, ..., weight_n] where weight_0 is the base weight.
See Also
StatCalculator : Calculate statistics with replicate weight SEs mi_ses_from_function : Combine replicate weights with multiple imputation
Source code in src\survey_kit\statistics\replicates.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | |
ComparisonItem ¶
Helpers for specifying comparisons in StatCalculator and MultipleImputation.
Provides two types of comparisons:
- Variable: Compare different variables (e.g., income vs income_2)
- Column: Compare different statistics (e.g., mean vs median)
Source code in src\survey_kit\statistics\comparisons.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |
Column ¶
Specify a comparison between two statistics/columns.
Used to compare different statistics for the same variable, such as comparing mean vs median or comparing different quantiles.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
column1
|
str
|
First statistic column to compare (e.g., "mean"). |
required |
column2
|
str
|
Second statistic column to compare (e.g., "median"). |
required |
name
|
str
|
Name for the comparison result. If empty, uses f"c({column1},{column2})". Default is "". |
''
|
Examples:
>>> from survey_kit.statistics.calculator import ComparisonItem
>>>
>>> # Compare mean vs median
>>> comp = ComparisonItem.Column(
... column1="mean",
... column2="median (not 0)",
... name="median_mean_diff"
... )
>>>
>>> comparison = sc.compare(
... sc,
... ratio=False,
... compare_list_columns=[comp]
... )["difference"]
Source code in src\survey_kit\statistics\comparisons.py
Variable ¶
Specify a comparison between two variables.
Used to compare different variables within the same dataset, such as comparing income from two sources or comparing outcomes across groups.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
value1
|
str
|
First variable value to compare (e.g., "income"). |
required |
value2
|
str
|
Second variable value to compare (e.g., "income_2"). |
required |
column
|
str
|
Name of the column containing variable names in the estimates dataframe. Default is "Variable". |
'Variable'
|
name
|
str
|
Name for the comparison result. If empty, uses f"{value1}vs". Default is "". |
''
|
Examples:
>>> from survey_kit.statistics.calculator import ComparisonItem
>>>
>>> # Compare two income variables
>>> comp = ComparisonItem.Variable(
... value1="wage_income",
... value2="self_employment_income",
... name="wage_vs_self_employment"
... )
>>>
>>> comparison = sc.compare(
... sc,
... difference=False,
... compare_list_variables=[comp]
... )["ratio"]